
An Easy “Hard Problem” for
Decision-Theoretic Planning

John L. Pollock
Department of Philosophy

University of Arizona
Tucson, Arizona 85721

pollock@arizona.edu
http://www.u.arizona.edu/~pollock

Abstract

This paper presents a challenge problem for decision-theoretic planners. State-space planners reason globally,
building a map of the parts of the world relevant to the planning problem, and then attempt to distill a plan
out of the map. A planning problem is constructed that humans find trivial, but no state-space planner can
solve. Existing POCL planners cannot solve the problem either, but for a less fundamental reason.

1. Introduction

Decision-theoretic planners can be divided roughly into state-space planners and POCL (partial-
order causal-link) planners. State-space planners first build a world model and then distill a plan
out of it. POCL planners try instead to build a plan from the bottom up, relying entirely upon
local relationships. Classical POCL planning was once the only game in town, but its image has
been tarnished by recent work on high-performance classical planners and the success of MDP
(Markov decision process) planning in decision-theoretic contexts. As a result, most work on
decision-theoretic planning has focused on state-space planners. There are only a few exceptions
(Mahinur [21,22,23], Burdian [17] , C-Buridan [12], B-Prodigy [5]). The general sentiment seems
to be that POCL planning is a dead-end, the future of planning lying with state-space planners.
The purpose of this paper is to is to present a planning problem that human beings find easy but
existing state-space planners are in principle incapable of solving. Existing POCL planners are
also incapable of solving it, but for a less fundamental reason. I presume that if human beings
find the problem easy, then a good planning algorithm ought to be able to solve it. So this
constitutes a challenge problem for decision-theoretic planning.

2. FOMDP Planning

Most work on decision-theoretic planning has proceeded within the framework of MDP
planning (see [7] for an excellent survey). The best understood MDP planners are fully observable
MDP planners (FOMDP’s, introduced by Bellman [2]). FOMDP’s are state-space planners. They
consider the space of all possible world-states, and the probability that an action performed in
any world-state will lead to a transition to any other world-state, and then they construct optimal
policies, which prescribe the optimal action to perform in each world state.
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The “standard” approach to solving FOMDP’s is based upon Bellman’s principle of optimality



and linear programming [2], and in effect constructs an optimal policy by regressing backwards
from the end of the plan. This approach chooses an optimal “k-steps to go” action for each
world-state relative to a previously selected (k–1)-step optimal policy. The latter prescribes optimal
(k–1)-steps-to-go actions, optimal (k–2)-steps-to-go actions, etc. The optimal 1-step-to-go actions
(at a world-state) are simply those having maximal expected-values in that state. Relative to a
choice of optimal 1-step-to-go actions, the optimal 2-steps-to-go actions (at a world-state) are
those producing maximal expected-values when combined with the 1-step-to-go actions. And so
on. An optimal n-step policy consists of the optimal n-steps-to-go actions, (n–1)-steps-to-go
actions, ... , 1-step-to-go actions.

3. POMDP Planning

In executing a policy, an agent can only respond to those parts of the world-state that are
known to it. FOMDP’s assume that the world is fully observable, so that the choice of action can
be made contingent on all features of the world simultaneously. Obviously, in most contexts full
observability is an unrealistic assumption. This has led to the investigation of partially observable
MDP’s (POMDP’s introduced by Aström [1]). Here it is assumed that the agent’s knowledge can
be represented as a probability distribution over the space of world-states. The probability
distributions constitute epistemic states, actions lead to transitions with various probabilities from
one epistemic state to another, and the task is to find an optimal policy in the space of epistemic
states. The general idea is to apply solution techniques for FOMDP’s to the space of epistemic
states [29].

4. The Challenge Problem

A generally recognized problem for MDP’s and POMDP’s is that the size of the state-space
grows exponentially with the number of features of the world that are taken into account.
However, it does not seem to be appreciated how serious this problem is. Very simple problems
that humans solve easily are completely intractable for MDP’s and POMDP’s. To illustrate the
difficulty, consider a simple planning problem that generalizes Kushmerick, Hanks and Weld’s
[17] “slippery gripper” problem. We are presented with a table on which there are 300 numbered
blocks, and a panel of correspondingly numbered buttons. Pushing a button activates a robot
arm which attempts to pick up the corresponding block and remove it from the table. We get 100
dollars for each block that is removed. Pushing a button costs two dollars. The hitch is that some
of the blocks are greasy. If a block is not greasy, pushing the button will result in its being
removed from the table with probability 1.0, but if it is greasy the probability is only 0.1. The
probability of any given block being greasy is 0.5. We are given 300 chances to either push a
button or do nothing. In between, we are given the opportunity to look at the table, which costs
one dollar. Looking will reveal what blocks are still on the table, but will not reveal directly
whether a block is greasy. What should we do? Humans find this problem terribly easy. Everyone
I have tried this upon has immediately produced the optimal plan: push each button once, and
don’t bother to look at the table. Note that the order makes no difference, so if plans are
identified with linear sequences of actions then there are 300! optimal plans. This is approximately
10614.

We can cast this as a 599 step POMDP. Odd-numbered steps consist of either pushing a
button or performing the null action, and even-numbered-steps consist of either looking at the
table or performing the null action. World-states are determined by which blocks are on the
table (Ti) and which blocks are greasy (Gi). The actions available are nil (the null action), Pi (push
button i), and L (look at the table). This cannot be cast as a FOMDP, because the agent cannot
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observe which blocks are greasy. But notice that even if it could, we would immediately encounter



an overwhelming computational difficulty. The number of world states would be 2600, which is
approximately 10180. To get an idea of what an immense number this is, note that it has been
estimated that there are approximately 1078 elementary particles in the entire universe. An optimal
policy specified an optimal action for each state, so there is no way that an agent could even
represent an optimal policy in this state-space, much less find one.

The state-space gets larger when we move to POMDP’s. In general, POMDP’s will have
infinite spaces of epistemic states corresponding to all possible probability distributions over the
underlying state-space, however a reachability analysis can often produce a smaller state-space
with just finitely many possible probability distributions. In the slippery blocks problem, it can
be shown that in reachable epistemic states prob(Ti) can taken any value in the set {1.0, .5·.9,
.5·.92, ... , .5·.9300, 0} and prob(Gi) can take the values .5 and 1.0. Not all combinations of these
values are possible, but the number of reachable epistemic states is greater than 301300, which is
approximately 10744. So it is computationally impossible for an implemented system to even
represent optimal policies in this POMDP, much less find them by linear programming.

5. Factored MDP’s

This kind of difficulty has led to work on factored MDP’s (see [7] for a general discussion of
factored MDP’s), and techniques for solving them. Abstraction techniques for solving factored
MDP’s observe that there are often differences between states that are not relevant to solving the
problem.1 It may be possible to cluster states together so that the computation of optimal k-steps-
to-go actions is the same for all the states in any given cluster. In fact, in computing optimal
k-steps-to-go actions for the slippery blocks problem, the only relevant difference is whether, for
the different choices of i, prob(Ti) = 1. Pi is an optimal k-steps-to-go action in an epistemic state
that will actually be reached by an optimal policy, relative to a terminal sequence of k–1 optimal
actions, iff prob(Ti) = 1 and Pi is not a member of the terminal sequence. It is unclear whether
algorithms for factoring MDP’s will be able to figure this out, but suppose we have an algorithm
that can. Unfortunately, this means that there is still one cluster for each subset of the buttons,
and so there are 2300 clusters. Furthermore, linear programming algorithms will have to regress
backwards through all the 300! orderings of button pushings and compare them in order to
compute that any of them is optimal. It is computationally impossible for an implemented
system to do this.

6. Parallel Decomposition

There is a different technique for solving large MDP’s that seems initially like it might be
helpful. This is parallel decomposition [7]. When the sources of value in an MDP can be split into
independent subsources, with the overall value of a state being the sum of the values contributed
by the subsources, it is sometimes possible to divide the MDP into MDP’s for each subsource,
find optimal policies for the parallel MDP’s, and then merge them to obtain an optimal policy for
the original MDP. The sources of value in the slippery blocks problem can be separated into the
discrete values obtained by removing each individual block from the table, so it may seem that
parallel decomposition might work. However, if we consider the problem of getting a single
block off the table, the optimal policy is to push the corresponding button, look to see if the
block is still there, and if it is then repeat the process until we either run out of turns or the block
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there is no obvious way to construct it out of the optimal policies for these smaller problems.
There are certainly ad hoc decompositions that will solve the problem. For instance, give

each block one button push and one chance to look at the table. Then the optimal policy is to
push the button corresponding to that block and not look at the table. Combining these policies
produces the optimal policy for the whole problem. However, a decomposition technique must
be sound, in the sense that it will produce optimal policies for all problems to which it is
applicable. There is no obvious general decomposition technique that is sound and will produce
this decomposition. For example, why should we distribute the steps equally among the constituent
goals? Obviously, there are problems for which that will not work.

My conclusion is that the slippery blocks problem is unsolvable using existing strategies for
solving POMDP’s. It is to be emphasized that this is actually an easy (for humans) problem, and
it only becomes hard by casting it as a POMDP. It must be concluded that, at least for this
particular problem, this is the wrong way to do decision-theoretic planning. I do not want to
conclude that there is in principle no way of solving this problem by factoring or decomposing
POMDP’s. Boutilier, Dean, and Hanks [7] make a case for the view that classical goal-regression
and POCL planning can be viewed as limiting cases of MDP planning, and I am going to suggest
below that decision-theoretic generalizations of POCL planning may be able to solve this problem.
So my claim will only be that we should take decision-theoretic POCL planning seriously, either
as an alternative to POMDP planning or as a particularly important special case of it.

7. Decision-Theoretic Planning Based
Upon High-Performance Classical Planners

The image of POCL planning in classical contexts was severely tarnished by the sucess of
GRAPHPLAN [3.4] and BLACKBOX [15,16], which often outperform POCL planners by several
orders of magnitude. There is some recent work on creating decision-theoretic planners based
upon GRAPHPLAN and BLACKBOX, so let us see how they fare on the slippery blocks problem.

High performance satisfiability planners deriving from BLACKBOX convert the problem into
a problem of finding assignments to propositional variables that satisfy a complex propositional
formula. Majercik and Littman [18,19] have extended this to probabilistic planning with their
planners C-MAXPLAN and ZANDER. These are not actually decision-theoretic planners, because
they do not take account of values — just the probabilities of achieving goals, and they aim at
constructing plans that maximize the probability of goal achievement. It seems likely that the
same ideas can be extended to decision-theoretic planning, and I will think of these planners in
that way. C-MAXPLAN encodes the planning problem into a propositional formula, and then
computes the probability that a plan will achieve its goal by computing all satisfying assignments
to the chance variables and summing them. However, there are as many satisfying assignments
as there are reachable world-states, i.e., more than 301300, so the problem cannot be solved in this
way.

ZANDER uses a different propositional encoding and then computes all possible trees of
variable assignments, choosing an optimal subtree. But again, there are as many satisfying
assignments as reachable world-states, so this tree cannot actually be built and the problem
cannot be solved in this way.

It is also worth noting that both C-MAXPLAN and ZANDER must compute and compare all
“plausible candidates” for optimal plans in order to determine which are actually optimal.
Sophisticated pruning algorithms may make it unnecessary to compare all possible plans, but
even with maximally efficient pruning all of the 300! optimal plans would have to remain
unpruned and be compared with each other to verify that none is surpassed by another. A real
agent cannot compare 300! (i.e., 10614) plans.
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supplemented with a reachability analysis. GRAPHPLAN gains its efficiency by first constructing
the plan-graph (used by the reachability analysis) and then searching backwards through it by
goal-regression. DT-GRAPHPLAN [27] applies the same idea to decision-theoretic planning. To
do this it computes probabilities and utilities for each proposition in the plan-graph at each stage
of its expansion, including multiple entries for the different possible probabilities of each
proposition. The original version of DT-GRAPHPLAN assumed that propositions were
independent, and so it could not handle the slippery blocks problem in which there is little
independence. More recently [26], probabilistic dependence has been handled by maintaining a
Bayesian net in parallel with the plan-graph that computes the non-independent probabilities.
To see how this fares, let us modify the slippery blocks problem slightly by supposing that
instead of knowing that the probability of a block being greasy is .5, what we know is that half
the blocks are greasy, each having the same initial probability of being greasy. The point of the
change is that the probability of a block being greasy then changes as other blocks are removed
from the table. This change does not affect what plans are optimal. It is not clear how to cast this
problem as a Bayesian net. Bayesian nets have to be acyclic, but if we include nodes for the
greasiness of the blocks, acyclicality fails. The probability of a block being on the table after the
corresponding button is pushed is influenced by whether it is greasy, and the probability of its
being greasy given that the button is pushed is influenced by whether it is still on the table. If we
do not include nodes for the greasiness of the blocks, then the nodes just concern which blocks
are on the table at each stage and which buttons have been pushed. However, as noted above,
the probability of a block being greasy is influenced by what other blocks are on the table, and
that in turn affects the probability that the block will still be on the table after its button is
pushed. Thus the Bayesian net must encode as a primitive probability every probability of the
form prob(T i/Pi & Π j∈ KTj) where K is a set of block numbers and i∉ K. There are 2300 such
probabilities, so this Bayesian net cannot actually be built or encoded in a real agent.

There are principled reasons why state-space planners cannot solve this problem. They begin
by constructing a complete map of the relevant parts of the world, and then cut the solution to
the planning problem out of it. Their reasoning is, in an important sense, global, and the difficulties
they encounter arise from the fact that “global” is often just too big. The slippery blocks problem
was explicitly designed to foil state-space planners. But, in fact, it is still a toy problem. The real
world is a big place. Unless we carefully massage them (and in fact, oversimplify considerably),
real-world planning problems will involve much larger cardinalities than the slippery blocks
problem. It is computationally impossible to solve such problems by global reasoning.

8. Decision-Theoretic POCL Planners

By contrast, POCL planners only engage in local reasoning. Decision-theoretic POCL planners
are generalizations of classical POCL planners [20,25]. They replace deterministic causal links by
probabilistic ones. I believe that the only decision-theoretic POCL planner that has actually been
constructed is Mahinur [21,22,23], although there are also probabilistic POCL planners like Buridan
[17], C-Buridan [12], and B-Prodigy [5] that could be modified to produce decision-theoretic
POCL planners. POCL planners first construct a crude plan on the basis of simple local relationships
between actions and goals. Then they search for other local relationships that give rise to destructive
interference. Then they search for still further local relationships that will enable the planner to
refine the plan to avoid the destructive interference. Finally, they search for additional local
relationships that may make it possible to improve the plan, generating a plan with a higher
expected-value. In sum, POCL planners are refinement planners that start with a crude plan and
then make it better. All of the considerations underlying both the discovery of the crude plan
and its subsequent refinement are local considerations, and the search for refinements is driven
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analyses and factoring in state-space planners is driven by the planning problem rather than by
attempts to refine a single candidate plan, and that is much less effective because it must take
account of all possible solutions to the planning problem. So POCL planners appear to avoid the
kind of theoretical difficulties that beset state-space planners. As we will see, there is a simple
reason why no existing POCL planners can solve the slippery blocks problem, but there seems to
be no reason in principle why they might not.

How might a POCL planner solve the slippery blocks problem? The sources of value in this
problem consist of getting the individual blocks off the table. A POCL planner can begin by
constructing a plan for getting each block off the table individually, e.g., push the corresponding
button. It is probably important that humans do this reasoning just once, for an unspecified block,
whereas existing POCL planners must do it individually for each of the 300 blocks. This is
something that should be explored as a way of improving POCL planners, possibly dramatically,
but I will leave it aside for now. POCL planners then merge these individual subplans into the
overall plan of pushing each button once. Then they search for and try to repair flaws in the
resulting plan. Classically, this is threat detection and threat resolution, but in decision-theoretic
contexts the flaws can be of more general sorts. The general idea behind POCL decision-theoretic
planning is that the planner makes the defeasible assumption that the expected-value of the
overall plan is the sum of the expected-values of the subplans, and then it must search for
destructive interactions between different parts of the plan that make that assumption false. If
such interactions are detected, an attempt is made to refine the plan to avoid or minimize the
interactions. In the slippery blocks problem, there are no destructive interactions, and a POCL
planner should be able to determine that quickly.

However, just finding the plan that is in fact optimal is not sufficient to solve the planning
problem. The planner must also verify that the plan is a solution to the problem. Different
planners understand the planning problem in different ways. POMDP planners usually take
their task to be that of finding an optimal plan. But decision-theoretic POCL planners like
Mahinur [21,22,23], take their task to be that of finding a plan whose expected-value comes up to
a threshold set by the user. If we understand the planning problem in the latter way, and we set
the threshold to be the value that is in fact the expected-value of the optimal plan, then merely
finding the optimal plan suffices to solve the problem. This way of understanding planning
problems is based upon Herbert Simon’s notion of satisficing [28]. However, it does not seem to
me to be a satisfactory way of understanding planning problems. If we set the threshold too high
(higher than the value of the optimal plan), no plan can be found, and if we set it too low the
planner will be content with finding plans that are gratuitously inferior to the optimal plan. In
effect, we must solve the problem of finding an optimal plan before we know how to set the
threshold. And notice that humans have no difficulty recognizing that the plan they produce for
the slippery blocks problem is optimal, so a planning algorithm ought to be able to do that as
well.

If the objective is to find an optimal plan, the POCL planner cannot stop with just finding the
plan that is in fact optimal. It must verify that it is actually optimal. Notice that for a POCL
planner there are not 300! optimal plans — there is just one, with the steps unordered with
respect to each other. POCL planners only order the steps if there is some reason to do so, and in
this case there is none. This gives them a huge advantage over those state-space planners that
insist on comparing all plausible linear plans. However, even though there is only one optimal
plan, the details of verifying that it is optimal remain a bit murky. A POCL planner might be able
to reason that changing any of the button-pushing steps in its plan would result in not pushing
one of the buttons (and possibly pushing another one more than once), which would lower the
expected-value of the plan; and looking instead of not looking would raise the costs without
raising the expected payoff, and so would also lower the expected-value. In this way, a POCL
planner might be able to solve the slippery blocks problem quickly and efficiently. But as remarked,
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optimal plans. If we set the threshold right, a planner like Mahinur [21,22,23] might well return
the desired plan when applied to the slippery blocks problem, but this does not establish that the
plan is optimal.

These considerations at least suggest that decision-theoretic POCL planning should be taken
seriously. There is, however, a well-recognized problem for classical POCL planners. They cannot
solve very big problems. Satisfiability-based planners seriously outperform them. But now let us
get really speculative. There may be room for hope. In a classical planning environment, such
planners are trying to solve difficult search problems by brute force. It is very difficult to see
how the search of a general-purpose classical POCL planner could be made more efficient (except
by building in ad hoc heuristics for specific domains). Viewed as a brute-force search problem,
decision-theoretic planning is harder than classical planning. However, decision-theoretic planners
also have much more knowledge at their disposal that may be useful in directing plan search in
intelligent ways. This is knowledge about probabilities and utilities. This may, in the end, enable
decision-theoretic POCL contingency planners to solve real-world problems. The performance of
such a planner will be dramatically influenced by the way it uses probabilities and utilities to
direct its search. This is nicely illustrated by some recent work by Onder and Pollack [21,22]. By
comparison, classical planners plan while wearing blinders, and can do little to improve
performance except for employing faster search algorithms. So I do not think we can rule out the
possibility that sophisticated decision-theoretic POCL planners may eventually be able to solve
problems in truly complex environments.

On problems sufficiently simple to be amenable to solution by state-space planners, POCL
planning may be orders of magnitude slower. But on problems of real-world complexity, POCL
planning may still be the only game in town. Whether POCL planners can actually solve such
problems remains to be seen, but at least they will not be subject to the same kinds of difficulties
as those encountered by state-space planners.

9. Decision-Theoretic POCL Planners

I have presented a challenge problem for decision-theoretic planning. For principled reasons,
existing planners cannot solve it. Very fundamental cardinality problems make it intractible for
state-space planners. Existing POCL planners do not even try to find optimal plans, so they do
not even try to solve the problem. Humans, on the other hand, find it easy. A challenge for the
planning community is to find a planning algorithm that does as well as human beings on this
problem.
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