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 The literature on the Sleeping Beauty problem has been dominated by Bayesians.1 Even those 
authors who are not Bayesians2 have addressed the problem without using much of the rich 
machinery available to objective probability theorists. We show that the objective probability 
theorist has a very simple argument for thirdism. 

Objective Probability 

 Bayesians take “definite” or “single-case” probabilities to be basic. Definite probabilities attach 
to closed formulas or propositions. We write them here using small caps: PROB(P) and PROB(P/Q). 
Most objective probability theories begin instead with “indefinite” or “general” probabilities 
(sometimes called “statistical probabilities”). Indefinite probabilities attach to open formulas or 
propositions. We write indefinite probabilities using lower case “prob” and free variables: 
prob(Bx/Ax). The indefinite probability of an A being a B is not about any particular A, but rather 
about the property of being an A. In this respect, its logical form is the same as that of relative 
frequencies. For instance, we might talk about the probability of a human baby being female. That 
probability is about human babies in general — not about individuals. If we examine a baby and 
determine conclusively that she is female, then the definite probability of her being female is 1, but 
that does not alter the indefinite probability of human babies in general being female. 
 Most objective approaches to probability tie probabilities to relative frequencies in some way, 
and the resulting probabilities have the same logical form as the relative frequencies. That is, they 
are indefinite probabilities. The simplest theories identify indefinite probabilities with relative 
frequencies.3 It is often objected that such “finite frequency theories” are inadequate because our 
probability judgments often diverge from relative frequencies. For example, we can talk about a 
coin being fair (and so the indefinite probability of a flip landing heads is 0.5) even when it is 
flipped only once and then destroyed (in which case the relative frequency is either 1 or 0). For 
understanding such indefinite probabilities, it has been suggested that we need a notion of 
probability that talks about possible instances of properties as well as actual instances. Theories of 
this sort are sometimes called “hypothetical frequency theories”. C. S. Peirce was perhaps the first 
to make a suggestion of this sort. Similarly, the statistician R. A. Fisher, regarded by many as “the 
father of modern statistics”, identified probabilities with ratios in a “hypothetical infinite 
population, of which the actual data is regarded as constituting a random sample” (1922, p. 311). 
Karl Popper (1956, 1957, and 1959) endorsed a theory along these lines and called the resulting 
probabilities propensities. Henry Kyburg (1974a) was the first to construct a precise version of this 
theory (although he did not endorse the theory), and it is to him that we owe the name 
“hypothetical frequency theories”. Kyburg (1974a) also insisted that von Mises should also be 
considered a hypothetical frequentist. More recent attempts to formulate precise versions of what 
might be regarded as hypothetical frequency theories are van Fraassen (1981), Bacchus (1990), 
Halpern (1990), Pollock (1990), Bacchus et al (1996).  
 It has always been acknowledged that for practical decision-making we need definite 
probabilities rather than indefinite probabilities. So theories that take indefinite probabilities as basic 

                                                
1 Elga 2000, Lewis 2001, Dorr 2002, Arntzenius 2003, Bradley 2003, Hitchcock 2004, Monton 2002, Weintraub 2004, 
White 2006. 
2 For instance, Horgan 2004, 2007. 
3 Examples are Russell 1948; Braithwaite 1953; Kyburg 1961, 1974; Sklar 1970, 1973. William Kneale (1949) traces the 
frequency theory to R. L. Ellis, writing in the 1840’s, and John Venn (1888) and C. S. Peirce in the 1880’s and 1890’s. 
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need a way of deriving indefinite probabilities them from them. That is, they need a theory of what 
is called “direct inference”. Theories of objective indefinite probability propose that statistical 
inference gives us knowledge of indefinite probabilities, and then direct inference gives us 
knowledge of definite probabilities. Reichenbach (1949) pioneered the theory of direct inference. 
The basic idea is that if we want to know the definite probability PROB(Fa), we look for the logically 
strongest reference property G such that we know the indefinite probability prob(Fx/Gx) and we 
know Ga, and then we identify PROB(Fa) with prob(Fx/Gx). The latter is a kind of “total evidence” 
requirement. When we make direct inferences, we should appeal to probabilities that take account 
of the most information for which we know the relevant probabilities. For example, actuarial 
reasoning aimed at setting insurance rates proceeds in roughly this fashion. Kyburg (1974) was the 
first to attempt to provide firm logical foundations for direct inference. Some more recent attempts 
are those of Bacchus (1990), Halpern (1990), Pollock (1990), and Bacchus et al (1996). 
 Our purpose is to analyze the Sleeping Beauty problem from the perspective of objective 
probabilities and direct inference. For this, the details of the particular objective probability theory 
employed make little difference. 

The Objective Argument  

With our account of objective probabilities in place, turn to Sleeping Beauty. 
 
On Sunday at brunch, Sleeping Beauty learns that she will undergo the following experiment. 
On Sunday night some experiments will put Sleeping Beauty to sleep.  On Monday morning, 
the experimenters toss a fair coin, and then they awaken Beauty. Some time later that day they 
tell Beauty that it is Monday, and put her back to sleep. If the coin landed heads, the 
experimenters do nothing.  If the coin landed tails, they administer a drug that erases her 
memories from Monday. On Tuesday, Beauty is either drugged up or sober. If drugged, she 
won’t remember her Monday awakening; if sober, she will. 
 
Beauty wakes up and doesn’t remember a previous awakening. Then she considers this 
question: what is the probability that the coin landed heads? How should Beauty answer? 

 Let a “Sleeping Beauty scenario” be a particular instance of the Sleeping Beauty Problem. B(t,s) 
means “s is a Sleeping Beauty scenario, and t is a time during s”, and Toss(x,s) means “x is a (the) 
coin toss involved in s”. We can suppose that the times involved in a Sleeping Beauty scenario begin 
with Sunday (before Sleeping Beauty is put to sleep) and extend for 72 hours — through the 
following Tuesday. (The length of this period will turn out to be irrelevant.) Where x is a coin toss, 
Hx means “x lands heads”. The description of the chance set-up dictates that the coin is fair: 

  prob(Hx/ B(t,s) & Toss(x,s)) = ½. (1) 

Note that x, s, and t are free variables in the formulas following “prob”. Let σ be a particular 
Sleeping Beauty scenario, and let τ be the toss of the coin in σ. On Sunday, Sleeping Beauty knows 
B(now,σ) & Toss(τ,σ), but she knows nothing else that will give her a different probability. So at that 
time Sleeping Beauty can infer by direct inference that PROB(Hτ) = ½. 

 Sleeping Beauty is put to sleep, the coin is tossed, and then at some subsequent time she is 
awakened and does not remember any previous awakening during the scenario. There is a time 
interval Δ  such that, were she to reflect on the fact that she just awoke, her best estimate of when 
she awoke would be that it was within Δ. For instance, she might think of Δ as “between 10 and 11 
minutes ago”. Let W(t,s) mean “Sleeping Beauty awoke in the scenario s sometime during the 
interval Δ (relative to t) and did not remember any previous awakening during s”. When Sleeping 
Beauty awakes, what should she take the value of PROB(Hτ) to be? She has learned something new, 
namely W(now,σ). If the probability 

 prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) (2) 
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is different from the probability in (1), she should make her direct inference from (2) rather than (1) 
because (2) involves a more specific reference property. So what is the value of the probability (2)? 

 The objective probability theorist can argue as follows. Let δ be the width of the interval Δ 
expressed in hours. Assuming a uniform probability distribution over times, 

  prob(W(t,s)/~Hx & B(t,s) & Toss(x,s)) = (2×δ)/72 (3) 

because for each Sleeping Beauty scenario, if the coin toss lands tails then there are two intervals of 
width δ out of the 72 hour period of the scenario in which W(t,s) is true. Similarly, 

  prob(W(t,s)/Hx & B(t,s) & Toss(x,s)) = δ/72. (4) 

It follows from (3) and (4) that: 

  prob(W(t,s)/~Hx & B(t,s) & Toss(x,s)) = 2 × prob(W(t,s)/Hx & B(t,s) & Toss(x,s)). (5) 

By two applications of Bayes’ theorem: 

 prob(~Hx/W(t,s) & B(t,s) & Toss(x,s))  

 = prob(W(t,s)/~Hx & B(t,s) & Toss(x,s)) × 
  

prob(~ Hx/B(t,s) & Toss(x,s))

prob(W(t,s)/B(t,s) & Toss(x,s))
 (Bayes’ theorem) 

 = 2 × prob(W(t,s)/Hx & B(t,s) & Toss(x,s)) × 
  

prob(~ Hx/B(t,s) & Toss(x,s))

prob(W(t,s)/B(t,s) & Toss(x,s))
 (from (5)) 

 = 2 × prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) ×  

  
  

prob(W(t,s)/B(t,s) & Toss(x,s))

prob(Hx/B(t,s) & Toss(x,s))
 × 

  

prob(~ Hx/B(t,s) & Toss(x,s))

prob(W(t,s)/B(t,s) & Toss(x,s))
 (Bayes’ theorem) 

 = 2 × prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) × 
  

prob(~ Hx/B(t,s) & Toss(x,s))

prob(Hx/B(t,s) & Toss(x,s))
. (6) 

By (1), prob(Hx /B(t,s) & Toss(x,s)) = prob(~Hx/B(t,s) & Toss(x,s)), so 

 prob(~Hx/W(t,s) & B(t,s) & Toss(x,s)) = 2 × prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) 

and hence  

  prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) = 1/3.  (7) 

 Upon awakening, Sleeping Beauty learns W(now,σ) & B(now,σ) & Toss(τ,σ). Hence she can then 
infer by direct inference that: 

  PROB(Hτ) = 1/3. (8) 

Thus the objective probability theorist has a simple argument, by direct inference, for thirdism. 
 

Generalizing the Problem  

 Most of the arguments in the literature arrive at the same conclusion as the objectivist 
argument, so the objectivist argument does not show that those arguments are wrong. But let us 
consider a generalization of the Sleeping Beauty problem. Suppose we use a biased coin to decide 
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when Sleeping Beauty will be awakened. The objective argument handles this variant without 
difficulty. Suppose the probability of heads is α. We get, as in (6) above: 

  prob(~Hx/W(t,s)  & B(t,s)& Toss(x,s)) 

  = 2 × prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) × 
  

prob(~ Hx/B(t,s) & Toss(x,s))

prob(Hx/B(t,s) & Toss(x,s))
 

  = 2 × prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) × 
 

1 !"

"
 

and hence 

  prob(Hx/W(t,s) & B(t,s) & Toss(x,s)) = 
 

!

2 "!
. (9) 

Then by direct inference 

  PROB(Hτ) = 
 

!

2 "!
. (10) 

So in this case we do not get the thirder answer. For instance, if α = 2/3, this has the consequence 
that PROB(Hτ) = ½. 
 Can any of the other arguments in the literature handle this variant of the Sleeping Beauty 
problem with equal aplomb? It is unclear to us that they can, so let us issue this as a challenge. 
Regardless of whether other approaches can arrive at the same answer, it seems to us that the 
objectivist argument settles the matter as to what the correct answer is. 
 

Conclusion 

 At long last, the party is over. It’s time for Sleeping Beauty to rest. 
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