
Page 1

Examples of the
OSCAR Planner

in Operation

 OSCAR_3.31 10/28/1999 12:25:57
 Non-Linear-Planner-43
Goal-state:
 know-your-birthdate
Given:
 in-garage
 see-box
 ((in-garage & go-in-house) =>

(see-key & (in-house & (~in-garage & (~outside & ~see-box)))))
 ((in-garage & go-outside) =>

(outside & (~in-house & (~in-garage & (~see-box & ~see-key)))))
 ((see-key & get-key) => have-key)
 ((in-house & go-to-garage) =>

 (in-garage & (~in-house & (~outside & (see-box & ~see-key)))))
 (((have-key & see-box) & open-box) => have-document)
 (((have-document & outside) & read-document) => know-your-birthdate)

==
Elapsed time = 0.36 sec
Cumulative size of arguments = 94
Size of inference-graph = 133 of which 0 were unused suppositions.
70% of the inference-graph was used in the argument.
198 interests were adopted.
58 interests were discharged by nodes used in the solution.
29% of the interests were used directly in finding the solution.
The branching factor = 1.09
149 interest-schemes were constructed.
68 instantiated-premises were constructed.
256 cycles of reasoning occurred.
39 plans were constructed.

Plan #39
 PLAN-STEPS:
 (1) go-in-house
 causal-links:
 0 --in-garage--> 1
 (2) get-key
 causal-links:
 1 --see-key--> 2
 ordering-constraints:
 2 > 1
 (6) go-to-garage
 causal-links:
 1 --in-house--> 6
 ordering-constraints:
 6 > 2
 (3) open-box
 causal-links:
 2 --have-key--> 3
 6 --see-box--> 3
 ordering-constraints:
 3 > 6
 (4) go-outside
 causal-links:
 6 --in-garage--> 4
 ordering-constraints:
 4 > 3
 (5) read-document
 causal-links:
 3 --have-document--> 5
 4 --outside--> 5
 ordering-constraints:
 5 > 4
 GOAL: know-your-birthdate
 established by:
 5 --> know-your-birthdate

Plan 39
The solution

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 12
constructed by
goal-regression,
null-plan, and
split-conjunctive-
goal.

start

1. go-in-house

in-garage

2. get-key

see-key

3. open-box

see-box

have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 12
undermining

start

1. go-in-house

in-garage

2. get-key

see-key

3. open-box

see-box

have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 15
add-ordering-constraint
to plan 12

start

1. go-in-house

in-garage

2. get-key

see-key

3. open-box

see-box

have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Page 2

Plan 15
undermining

start

1. go-in-house

in-garage

2. get-key

see-key

3. open-box

see-box

have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 22 reuses nodes from plan 27
and will replace plan 4

start

1. go-in-house

in-garage

2. get-key

see-key

3. open-box

see-box

have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 15

start

1. go-in-house

in-garage

6. go-in-garage

in-house

see-box

Plan 4

Plan 22

This could have been
constructed without
reuse-nodes, because no
goal is repeated.

Plan 23
reuse-nodes,
replacing plan 4
by plan 22
in plan 15

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 23
undermining

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 27
add-ordering-constraint
to plan 23

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 27
undermining

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Page 3

Plan 27

start

1. go-in-house

in-garage

6. go-in-garage

in-house

in-garage

Plan 1

Plan 30

Plan 30 reuses nodes from plan 27
and will replace plan 1

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

This repeats the goal
in-garage.

Plan 32
reuse-nodes,
replacing plan1
by plan 30
in plan 27

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 32
undermining

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 36
add-ordering-constraint
to plan 32

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 36
undermining

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Plan 39
add-ordering-constraint
to plan 36

start

1. go-in-house

in-garage

2. get-key

see-key

6. go-in-garage

in-house

3. open-box

see-box have-key

4. go-outside

in-garage

5. read-document

outside

have-document

know-your-birthday

finish

Page 4

Given:
(:type wheel1 wheel)
(:type wheel2 wheel)
(:type hub isa-hub)
(:type nuts are-nuts)
(:type boot container)
(intact wheel2)
(in jack boot)
(in pump boot)
(in wheel2 boot)
(in wrench boot)
(on wheel1 hub)
(on-ground hub)
(tight nuts hub)
~(locked boot)
~(is-open boot)
~(inflated wheel2)
~(unfastened hub)
(all x :type container)(((~(locked x) & ~(is-open x)) & (open-up x)) => (is-open x))
(all x :type container)(((is-open x) & (close x)) => ~(is-open x))
(all x)(all y :type container)((((in x y) & (is-open y)) & (fetch x y)) => ((have x) & ~(in x y)))
(all x)(all y :type container)((((have x) & (is-open y)) & (put-away x y)) => (~(have x) & (in x y)))
(all x :type are-nuts)(all y :type isa-hub)((((have wrench) & ((tight x y) & (on-ground y))) & (loosen x y))

=> ((loose x y) & ~(tight x y)))
(all x :type are-nuts)(all y :type isa-hub)((((have wrench) & ((loose x y) & (on-ground y))) & (tighten x y))

=> ((tight x y) & ~(loose x y)))
(all x :type isa-hub)((((on-ground x) & (have jack)) & (jack-up x)) => (~(on-ground x) & ~(have jack)))
(all x :type isa-hub)((~(on-ground x) & (jack-down x)) => ((on-ground x) & (have jack)))
(all x :type are-nuts)(all y :type isa-hub)(((~(on-ground y) & (~(unfastened y) & ((have wrench) & (loose x y)))) & (undo x y))

=> ((have x) & ((unfastened y) & (~(on x y) & ~(loose x y)))))
(all x :type are-nuts)(all y :type isa-hub)(((~(on-ground y) & ((unfastened y) & ((have wrench) & (have x)))) & (do-up x y))

=> ((loose x y) & (~(unfastened y) & ~(have x))))
(all x :type wheel)(all y :type isa-hub)(((~(on-ground y) & ((on x y) & (unfastened y))) & (remove-wheel x y))

=> ((have x) & ((wheeless y) & ~(on x y))))
(all x :type wheel)(all y :type isa-hub)((((have x) & ((wheeless y) & ((unfastened y) & ~(on-ground y)))) & (put-on-wheel x y))

=> ((on x y) & (~(have x) & ~(wheeless y))))
(all x :type wheel)((((have pump) & (~(inflated x) & (intact x))) & (inflate x)) => (inflated x))

Goal-state:
~(is-open boot)
(in jack boot)
(in pump boot)
(in wheel1 boot)
(in wrench boot)
(tight nuts hub)
(inflated w heel2)
(on wheel2 hub)

Stuart RussellÕs Flat Tire Problem
Plan #200
AN-STE PS:
1) (open-up boot)
 causal-links:
 0 --~(is-open boot)--> 1
 0 --~(locked boot)--> 1
2) (fetch jack boot)
 causal-links:
 0 --(in jack boot)--> 2
 1 --(is-open boot)--> 2
 ordering-constraints:
 2 > 1
4) (fetch wrench boot)
 causal-links:
 1 --(is-open boot)--> 4
 0 --(in wrench boot)--> 4
 ordering-constraints:
 4 > 1
5) (loosen nuts hub)
 causal-links:
 0 --(on-ground hub)--> 5
 4 --(have wrench)--> 5
 0 --(tight nuts hub)--> 5
 ordering-constraints:
 5 > 4
3) (jack-up hub)
 causal-links:
 0 --(on-ground hub)--> 3
 2 --(have jack)--> 3
 ordering-constraints:
 3 > 2
 3 > 5
6) (undo nuts hub)
 causal-links:
 3 --~(on-ground hub)--> 6
 0 --~(unfastened hub)--> 6
 4 --(have wrench)--> 6
 5 --(loose nuts hub)--> 6
 ordering-constraints:
 6 > 3

7) (remove-wheel wheel1 hub)
 causal-links:
 3 --~(on-ground hub)--> 7
 0 --(on wheel1 hub)--> 7
 6 --(unfastened hub)--> 7
 ordering-constraints:
 7 > 6
8) (put-away wheel1 boot)
 causal-links:
 1 --(is-open boot)--> 8
 7 --(have wheel1)--> 8
 ordering-constraints:
 8 > 7
9) (fetch pump boot)
 causal-links:
 0 --(in pump boot)--> 9
 1 --(is-open boot)--> 9
 ordering-constraints:
 9 > 1
10) (inflate wheel2)
 causal-links:
 9 --(have pump)--> 10
 0 --~(inflated wheel2)--> 10
 0 --(intact wheel2)--> 10
 ordering-constraints:
 10 > 9
11) (fetch wheel2 boot)
 causal-links:
 1 --(is-open boot)--> 11
 0 --(in wheel2 boot)--> 11
 ordering-constraints:
 11 > 1
12) (put-on-wheel wheel2 hub)
 causal-links:
 3 --~(on-ground hub)--> 12
 6 --(unfastened hub)--> 12
 11 --(have wheel2)--> 12
 7 --(wheeless hub)--> 12
 ordering-constraints:
 12 > 7
 12 > 11

19) (do-up nuts hub)
 causal-links:
 3 --~(on-ground hub)--> 19
 4 --(have wrench)--> 19
 6 --(unfastened hub)--> 19
 6 --(have nuts)--> 19
 ordering-constraints:
 19 > 12
18) (jack-down hub)
 causal-links:
 3 --~(on-ground hub)--> 18
 ordering-constraints:
 18 > 19
14) (put-away jack boot)
 causal-links:
 1 --(is-open boot)--> 14
 18 --(have jack)--> 14
 ordering-constraints:
 14 > 18
15) (put-away pump boot)
 causal-links:
 1 --(is-open boot)--> 15
 9 --(have pump)--> 15
 ordering-constraints:
 15 > 10
17) (tighten nuts hub)
 causal-links:
 4 --(have wrench)--> 17
 19 --(loose nuts hub)--> 17
 18 --(on-ground hub)--> 17
 ordering-constraints:
 17 > 18
16) (put-away wrench boot)
 causal-links:
 1 --(is-open boot)--> 16
 4 --(have wrench)--> 16
 ordering-constraints:
 16 > 17

13) (close boot)
 causal-links:
 1 --(is-open boot)--> 13
 ordering-constraints:
 13 > 8
 13 > 11
 13 > 14
 13 > 15
 13 > 16
GOAL:
(~(is-open boot) &
((in jack boot) &
((in pump boot) &
((in wheel1 boot) &
((in wrench boot) &
((tight nuts hub) &
((inflated wheel2) &
(on wheel2 hub))))))))
 established by:
 8 --> (in wheel1 boot)
 10 --> (inflated wheel2)
 12 --> (on wheel2 hub)
 13 --> ~(is-open boot)
 14 --> (in jack boot)
 15 --> (in pump boot)
 16 --> (in wrench boot)
 17 --> (tight nuts hub)

Stuart RussellÕs Flat Tire Problem

OSCARÕs Performance on
Stuart RussellÕs Flat Tire Problem

Elapsed time = 7 .39 sec
Cumulative size of a rguments = 396
Size of inference-graph = 565 of which 0 were unused supposit ions.
70% of the inference-graph was used in the arg ument.
961 interests were adopted.
288 interests were discharged by nodes used in the solution.
29% of the interests were used directly in f inding the s olution.
The branching factor = 1.02
679 interest-sche mes were const ructed.
257 instantiated-premises were constructed.
1112 cycles of reas oning occurred.
200 plans were constr ucted.

Planning and Searching

¥ Planning is generally characterized as search.

¥ Early planners searched the state-space, but that was
immense and they could not solve hard problems.

¥ For a simplified version of the flat tire problem:

(number-of-plans *start-state* *operators*
 '((tight nuts hub) (on wheel2 hub)) 12)

There are 1,367,478,242 plans of length 12
for a branching factor of 5.77
There are 273 plans of length 12 establishing

((tight nuts hub) (on wheel2 hub))
The effective branching factor is 3.61

Planning and Searching

¥ Modern planners have been described as Òsearching
the plan-spaceÓ.

¥ This consists of the space of (partial) plans produced
in the course of searching for the solution.

¥ But this space is entirely dependent on the planning
algorithm, and is not characteristic of the problem
itself.

¥ In particular, the branching factor does not tell us how
hard the problem is Ñ just how hard it is for this
planner.

¥ Note that OSCARÕs branching factor for the flat-tire
problem is just 1.02. This hardly qualifies as search.

Planning and Searching

¥ My conjecture is that humans can only solve problems
with very small branching factors, relative to their
planning algorithm.

¥ OSCAR constructs plans much like human beings do.

¥ Most automated planners take search seriously, but
this makes the problems harder than they need be.

¥ OSCAR is able to solve hard problems very efficiently
(but also very slowly compared to other planners).

