OSCAR_3.31 10/28/1999 12:
Non-Linear-Planner-43

Goal-state:
know-your-birthdate
Given:

((in-garage & go-in-house) =>
(see-key & (in-house & (~in-garage & (~outside & ~see-box))))
((in-garage & go-outside) =>
(outside & (~in-house & (~in-garage & (~see-box & ~see-key))
((see-key & get-key) => have-key)
((in-house & go-to-garage) =>
(in-garage & (~in-house & (~outside & (see-box & ~see-key))))
(((have-key & see-box) & open-box) => have-document)
(((h i

& outside) & read-d) => know-your-birthd:

Plan #39
PLAN-STEPS:

(1) go-in-house
causalinks:

garage->1

(2) get-key
causalinks:

T L
5

1 —in-house-> 6
ordering-constraint

6>2
(3) open-box
causalinks:
2 —have-key-> 3
6 ~see-box->3

Elapsed time = 0.36 sec 3>6
Cumulative size of arguments =94 (4) go-outside
causal-links:

Size of inference-graph = 133 of which 0 were unused suppositions.
70% of the inference-graph was used in the argument.

198 interests were adopted.

58 interests were discharged by nodes used in the solution.

29% of the interests were used directly in finding the solution.

The branching factor = 1.09

149 interest-schemes were constructed.

68 instantiated-premises were constructed.

256 cy cles of reasoning occurred.

39 plans were constructed.

4>3
(5) read-document
causaldinks:
3 -have-document-> 5
ide—>5

>
GOAL: know-your-birthdate
established by:
5 —> know-your-birthdate

startx
Plan 39

. in-garage
The solution

1. go-in-house
in-house see-key
6. go-in-garage d———————= 2. get-key
see-box have-key
in-garage 3. open-box
4. go-outside have-document
outside
5. read-document

know-your-birthday

*finish»

*startx
Plan 12
constructed by
goal-regression,
null-plan, and

in-garage

1. go-in-house

xstartx

Plan 12 v
s in-garage
undermining l
1. ﬂD—In—honse\‘

in-garage

see-box
see-key

2. get-key
have-key
3. open-box
4. go-outside have-document

outside

5. read-document

know-your-birthday

finish*

N ! . in-garage
split-conjunctive-
see-box
goal.
have-key
3. open-box
4. go-qutside have-document
outside
5. read-document
know-your-birthday
“finish
wstartx
Plan 15
. . in-garage
add-orderin g-constraint
to plan 12
1. go-in-house
in-garage
see-pox see-key
2. get-key
have-key

3. open-box

4- go-gutside have-document

outside

5. read-document

know-your-birthday

finish*

Page 1

*startx

Plan 22 reuses nodes from plan 27
and will replace plan 4 in-garage

1. go-in-house

in-garage

(_see-box)

ostre] see-key
' \ Plan 4
\
Plan 22 (Cin-garage) \ 2. get-key

have-key

4. go-qu have-document

outside Plan 15

This could have been
constructed without
reuse-nodes, because no
goal is repeated.

5. read-document

know-your-birthday

finish*

startx
Plan 23

P in-garage
undermining

1. go-in-house
in-garage

in-house see-key

6. go-in-garage

have-key

3. open-box

4. go-outsi

have-document

outside

5. read-document

know-your-birthday

finish

Plan 15 /
L in-garage
undermining
1. go-in-house
in-garage
see-key
2. get-key
have-key
3. open-box
4. go-qutside have-document
outside
5. read-document
know-your-birthday
*finishx
*startx
Plan 23 P
in-garage
reuse-nodes,
replacing plan 4
b P lan §2P 1. go-in-house
oyPp in-garage
in plan 15
in-house see-key
6. go-in-garage 2. get-key
see-box have-key
3. open-box
4. go-qutside have-document
outside
5. read-document
know-your-birthday
finish
Plan 27
add-orderin g-constraint
to plan 23

Py

4.go-outside

(have-document)

5.read-document

know-your-birthday

Plan 27
undermining

4.go-outside

(have-document

5.read-document

know-your-birthday

Page 2

Plan 30 reuses nodes from plan 27 [startx_| start*
and will replace plan 1 Plan 32 in-garage
Plan1 garage reuse-nodes,
replacing plan1
P 8 P! i
)/ 1. go-in-house by plan 30 1. go-in-house
Crgmrmge N, inplan 27
| in-house see-key in-house seekey
“ 6. go-in-garage 2. get-key 2. get-key
‘ seobox have-key see-box have-key
In-girage 3. open-box
Plan 30
4. go-outside 4. go-gutside have-document
f outside Plan 27 outside
This repeats the goal
in-garage.
garag 5. read-qocument 5. read-document
Know-your-birthday know-your-birthday
~finishx ~finish*
*startx startx
Plan 32 in-garage Plan 36
undermining add-orderin g-constraint In-garage
to plan 32
1. go-in-house 1. go-in-house
in-house see-key In-house see-key
6. go-in-garage 2. get-key 6. go-in-garage 2. get-key
see-box have-key seevbox havekey
in-garage =
3. open-box in-garage 3. opc
4. go-outside .
have-document 4. go-qutside have-document
outside outside
5. read-document 5. read-document
know-your-birthday Know-your-birthday
*finishx “finishn
*startx startx
Plan 36 Plan 39
.. in-garage . . in-garage
undermining add-orderin g-constraint
to plan 36
1. go-in-house

in-house see-key

6. go-in-garage 2. get-key

see-box

have-key

In-garage 3. open-box

4. go-qutside have-document

outside

5. read-document

know-your-birthday

finish*

1. go-in-house
in-house

see-key

6. go-in-garage d——————— 2. get-key

see-box have-key
[n-garage 3. open-box
4- go-qutside have-document
outside

5. read-document

know-your-birthday

finish

Page 3

Given:
:type wheel1 wheel) 4 4
b wheswhey Stuart Russell’s Flat Tire Problem
(:type hub isa-hub)
(:type nuts are-nuts)
(:type boot container)

(intact wheel2)

(in jack boot) Goal-state;

(in pump boot) ~(is-open boot)
(in wheel2 boot) (in jack boot)

(in wrench boot) (in pump boot)
(on wheel1 hub) (in wheell boot)
((on-ground hub) (in wrench boof)
(tight nuts hub) (tight nuts hub)
~(locked boot) (inflated w heel2)
~(is-open boot) (‘on wheel2 hub)

~(inflated wheel2)
~(unfastened hub)
(all x type container)((~(locked x) & ~(is-open x)) & (open-up x)) => (is-open x))
(all x type container)(((is-open x) & (close x)) => ~(is-open x))
(all x)(all y :type container)((((in x y) & (is-openy)) & (fetch x y)) => ((have x) &~{in xy)))
(all x)(all y :type container)((((have x) & (is-openy)) & (put-away x y)) = (~(have x) & (inxy)))
(all x type are-nuts)(all y :type isa-hub)((((have wrench) & ((tight x y) & (on-ground y))) & (loosen xy))
=> (loose x y) &~{ tight x y)))
(sl x 2ype are-nuts)all y ype fsa-hub) ({ have wrench) & (loose xy) & (on-groundy)) & (tighten xy))
ight x y) & ~(loose xy)))
(all x type i hubi((((on-ground x) & (have jack)) & (jack-up x)) = (~{ on-ground x) & ~(have jack)))
(all x type isa-hub)((~{ on-ground x) & (jack-down x)) => ((on-ground x) & (have jack)))
(all x type are-nuts)(all y :type isa-hub)(((~(on-ground y) & (~{ unfastened y) & ((have wrench) & (loose xy)))) & (undo x y)
=> ((have x) & ((unfastenedy) & (~(on xy) & ~(loose xy)))
(all x type are-nuts)(all y :type isa-hub)(((~{ on-ground y) & ((unfastenedy) & ((have wrench) & (have x))) & (do-up xy))
=> (loose x y) & (~(unfastened y) & ~(have x))))
(all x type wheel)(all y :type isa-hub)((~{ on- gmund y) & ((on xy) & (unfastenedy))) & (remove-wheel x y))
=> (have x) & ((wheeless y) & ~(o
(all x type wheel)ally type isa-hub)((((have Qe L ¥) & ((unfastenedy) & ~(on-ground y)))) & (put-on-wheel xy)
> ((on x y) & (~(have x) & ~(wheeless y)))

{all x_typo wheel)(({(have pump) & (~(inflated x) & (intact) & (inflate x)) => (inflated x))

Stuart Russell’s Flat Tire Problem

Plan #200 7) (remove-wheel wheelt hub) 19) (do-up nuts hub)
ANSTERS: Cavainke: Causabinks:
) Caponap baoy 3 amground hub)->7 S langround hub)-> 19 13 (closobooy
st 0~ on wheelt hub)->7 4 have wrench)-> 18 causallinks: N
opon boct-> 1 i f o w tlsommbaton
locked boot)-> 1 omering-cnnslmims. 6~{ have nuts)-> 19 Ogggeonstraintst
2 e ok oo Se ordaring caniraints: i
Causaliis: 5)(patavay wheet booy Tos 13 e
0~ in jack boot)-> 2 causal-links: 18) (jack-down hub) 13515
1 is-open boot)->2 1~(is-open bootj-> 8 causalinks: e
it consam 7 have whod)> 8 S (ongrownd > 18 o012
o e wrnh boot oo s (L isopon booy &
ek o et pump bt 19 (put-away jackboot) njackbooh 8
4 feopen boot)-> 4 Sanal ke Pt (o pump boot &
0 in wrench boot)-> 4 0~(In pump boot}->9 1~ is-open bootj-> 14 {1 whesl boot &
ity o 1 {ls-opon bootind 16 have Jockros 14 W wranch boct
) looson nuts hub) o (flated wheei2) &
Caueariin: 10 (inate et 19 (putaway pump boot) on wheelZ)
S ergmna s Sausati Lateal i establshed byt
eh)-> 5 -> 10 1~ is-open boot-> 15 852 4in wheott boot)
0 tight nuts hi ~~(inflated wheel2)--> ~{ have pump)--> I e
w—:""u“ﬂ"m 0 —~(inflated wh ,!.'i)m 10 9 have pump)--> 15 12 (on wheel2 hub)

0
orderingconstraints: 15> 1 13 > ~(is-open boot)

I - B
1088 snaszhons)t 23 e ey
0 on-ground hub)-> 3 causainks: rave wranch)-» 17 127 Lin wrench oo
2 have jack)->3 1 is-open boot)-> 11 19 —{ loose nuts hub)-> 17 0
ordering-constraints: 0 —(in whoel2 boot)-> 11 18 on-ground hub)-> 17
3>2 i i
3>5 >1 17> 18

6) (undo nuts hub) 12) (plll-uvl-vmeel ‘wheel2 hub) 16) (put-away wrench boot)
causalinks: causalin causalinks:
3-~(onground hub)-> 6 3-~(onground hub)--> 12 1 is-open boot)-> 16
0 -~(unfastened hub)-> 6 6 (unfastened hub)-> 12 44 have wrench).> 16
4~ have wrench)-> 6 11 have wheel2)-> 12 ordering-constraints:

5 { loose nuts hub)-> 6 7 wheless hub)-> 12
6>3 12>7
12211

OSCAR’s Performance on
Stuart Russell’s Flat Tire Problem

Elapsed time =7 39 sec

Cumulative size of a rguments =396

Size of inference-graph =565 of which 0 were unused supposit ions.
7 0% of the inference-graph was used in the arg ument.

961 interests were adopted.

283 interests were discharged by nodes used in the solution.
2% of the interests were used directly in f inding the s olution.
The branching factor = 1.02

679 interest-sche mes were constructed.

257 instantiated-premises were constructed.

1112 cycles of reas oning occurred.

200 plans were constr ucted.

Planning and Searching

Modern planners have been described as “searching
the plan-space”.

* This consists of the space of (partial) plans produced
in the course of searching for the solution.

But this space is entirely dependent on the planning
algorithm, and is not characteristic of the problem
itself.

In particular, the branching factor does not tell us how
hard the problem is — just how hard it is for this
planner.

Note that OSCAR’s branching factor for the flat-tire
problem is just 1.02. This hardly qualifies as search.

Page 4

Planning and Searching

* Planning is generally characterized as search.

Early planners searched the state-space, but that was
immense and they could not solve hard problems.

For a simplified version of the flat tire problem:

(number-of-plans *start-state* *operators*
‘((tight nuts hub) (on wheel2 hub)) 12)

There are 1,367,478,242 plans of length 12

for a branching factor of 5.77

There are 273 plans of length 12 establishing
((tight nuts hub) (on wheel2 hub))

The effective branching factor is 3.61

Planning and Searching

My conjecture is that humans can only solve problems
with very small branching factors, relative to their
planning algorithm.

OSCAR constructs plans much like human beings do.
Most automated planners take search seriously, but
this makes the problems harder than they need be.
OSCAR is able to solve hard problems very efficiently
(but also very slowly compared to other planners).

