
III
EPISTEMIC COGNITION

1.  The Overall Structure

OSCAR receives two kinds of input Ñ percepts provided by perception, and desires
produced by optative dispositions.  Epistemic cognition produces beliefs about adoptable
plans, as discussed above, and these are used to initiate action.  Both inputs and the
results of inference are stored as nodes of the inference-graph.  They are also placed on the
inference-queue, which is a queue of inferences waiting to be performed, as discussed
above.  It will be discussed further below. For use as a free-standing reasoner, OSCAR
can be given unsupported premises in the list premises.  Premises are triples 〈formu-
la,background-knowledge?,strength〉 , where formula is the premise-formula and strength is
the undefeated-degree-of-support posited for the sequent built out of the supposition and
formula.  If strength is 1, the premise is assumed to be a necessary truth, and is used as
such in deductive reasoning.  If strength is not 1, the premise can be defeated by finding a
rebutting defeater, but no sense can be made of undercutting defeat for premises.
Background-knowledge? is T or NIL, and is used to control reasoning.  This will be discussed
further in Chapter Four.

This general architecture is encoded as follows:

OSCAR:
¥ Insert the members of permanent-ultimate-epistemic-interests into ultimate-epistemic-

interests, and insert them into the inference-queue.
¥ Insert the members of premises into the inference-queue, adopting interest in rebut-

ting defeaters for those that are not necessary truths.
¥ Initialize global-assignment-tree.
¥ Do the following repeatedly and in parallel:

¥ Run environmental input through the optative dispositions, insert the result-
ing desires into the inference-queue, and encode this input in nodes of the
inference-graph.  Update the desire-strengths of desires already on the
inference-queue, and adjust their priorities in light of changes in desire-
strength.

¥ Insert new perceptual states into the inference-queue and encode this input in
nodes of the inference-graph.  Update the clarities of percepts already on the
inference-queue and adjust their priorities in light of changes in clarity.

¥ THINK
¥ INITIATE-ACTIONS

For use as a free-standing reasoner that is not embedded in an agent, COGITATE is a
variant of OSCAR that does not deal with percepts, desires, or actions:

COGITATE:
¥ Insert the members of permanent-ultimate-epistemic-interests into ultimate-epistemic-

interests, and insert them into the inference-queue.
¥ Insert the members of premises into the inference-queue, adopting interest in rebut-

ting defeaters for those that are not necessary truths.
¥ Initialize global-assignment-tree.
¥ Do the following repeatedly:

¥ THINK-OR-DIE
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THINK-OR-DIE differs from THINK only in that when the inference-queue becomes empty,



the reasoner stops.  It is COGITATE rather than OSCAR that is called by the function TEST,
whose use is described in chapter one.  SIMULATE-OSCAR is a more complex variant of
OSCAR that siulates perceptual input.  It will be described below.

The inference-graph is the data-structure recording the reasonerÕs forwards-reasoning.
In the interest of theoretical clarity, I defined the inference-graph in chapter two in such a
way that different arguments for the same conclusion are represented by different nodes.
This made it clearer how the algorithm for computing defeat-status works.  However, for
the purpose of implementing defeasible reasoning, this is an inefficient representation of
the reasoning, because it leads to needless duplication.  If we have two arguments supporting
a single conclusion, then any further reasoning from that conclusion will generate two
different nodes.  If we have two arguments for each of two conclusions, and another
inference proceeds from those two conclusions, the latter will have to be represented by
four different nodes in the inference-graph, and so on.  This is illustrated in figure 1,
where P and Q are each inferred in two separate ways, and then R is inferred from P and
Q.

A B

P P Q Q

C D E F G H

R R R R

Figure 1. An inference-graph with multiple
arguments for a single conclusion.

A more efficient representation of reasoning would take the inference-graph to be an
and/or graph rather than a standard graph.  In an and/or graph, nodes are linked to sets
of nodes rather than individual nodes.  This is represented diagramatically by connecting
the links with arcs.  In an and/or inference-graph, when we have multiple arguments for
a conclusion, the single node representing that conclusion will be tied to different bases
by separate groups of links.  This is illustrated in figure 2 by an and/or inference-graph
encoding the same reasoning as the standard inference-graph in figure 1.
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An and/or Inference-graph.
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Figure 2.

In an and/or inference-graph, a support-link  will be a set of supporting-arrows connected
with an arc.

Although and/or graphs provide an efficient representation of reasoning, they compli-
cate the computation of defeat-status.  Using simple inference-graphs, we can use the
defeat-status computation of chapter two to compute defeat-statuses, and then use the
computed defeat-statuses to compute the undefeated-degrees-of-support for the nodes in
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the inference-graph.  The undefeated-degree-of-support for a node is zero if it is defeated,



and it is its strength otherwise.
With and/or inference-graphs, we can no longer separate the computation of defeat-

statuses and undefeated-degrees-of-support.  To illustrate, consider the two inference-
graphs in figures 3 and 4.  They could arise from different degrees of support for the two
nodes supporting R.  In figure 3, only the rightmost node is strong enough to defeat S,
whereas in figure 4, only the leftmost node is strong enough to defeat S.  The difference
has repurcusions, because in figure 3, S is provisionally defeated, and hence T is also
provisionally defeated, but in figure 4, S is defeated outright, and hence T is undefeated.
The difficulty is now that if we try to represent these as and/or graphs, we get the same
graph, drawn in figure 5.  This representation cannot distinguish between the situation
diagrammed in figure 3 and that diagrammed in figure 4
.
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Figure 3. T is provisionally defeated.

R

P

A

R

P

C

B

Q

E

D

ST

F G

Figure 4. T is undefeated.
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Figure 5. T The status of     is indeterminate.

This difficulty can be avoided by attaching strengths to the support-arrows.  In figure
6, if we attach the strengths in brackets, we get a representation of figure 3, and if we
attach the strenghts in braces, we get a representation of figure 4.
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Figure 6. T The status of     varies.
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With this modification, we can construct a defeat-status computation that is equivalent
to that for simple inference-graphs.  The trick is to take the defeat-status of a node to be
its undefeated-degree-of-support rather than just ÒdefeatedÓ or ÒundefeatedÓ.  If all argu-
ments supporting a node are defeated, then the undefeated-degree-of-support is 0.  Other-
wise, it is the maximum of the strengths of the undefeated arguments.  We can then
modify the definition given in chapter two as follows:

A node of the inference-graph is initial iff its node-basis and list of node-defeaters is
empty.

σ is a partial status assignment iff σ is a function assigning real numbers between 0 and
1 to a subset of the nodes of an inference-graph and to the support-links of those
nodes in such a way that:
1. σ assigns its node-strength to any initial node;
2. If σ assigns a value α  to a defeat-node for a support-link and assigns a value less

than or equal to α  to some member of the link-basis, then σ assigns 0 to the link;
3. Otherwise, if σ assigns values to every member of the link-basis of a link and every

link-defeater for the link, σ assigns to the link the minimum of the strength of the
link-rule and the numbers σ assigns to the members of the link-basis.
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4. If every support-link of a node is assigned 0, the node is assigned 0;



5. If some support-link of a node is assigned a value greater than 0, the node is
assigned the maximum of the values assigned to its support-links.

6. If every support-link of a node that is assigned a value is assigned 0, but some
support-link of the node is not assigned a value, then the node is not assigned a
value.

σ is a status assignment iff σ is a partial status assignment and σ is not properly con-
tained in any other partial status assignment

Now the question arises how defeat-statuses (or undefeated-degrees-of-support) should
be determined for the nodes of the inference-graph.  The following proposal seems natural:

The undefeated-degree-of-support of a node of the and/or inference-graph is 0 if some
status-assignment fails to assign a value to it; otherwise it is the minimum of the
values assigned to it by status assignments.

However, this way of computing undefeated-degrees-of-support for nodes of an and/or
inference-graph is not equivalent to the preceding method of computing degrees-of-
jusitification for a simple inference-graph.  Equivalence would require the truth of the
following Correspondence Theorem:

A node of the and/or inference-graph is undefeated (has a nonzero undefeated-
degree-of-support) iff one of the corresponding nodes of the simple inference-graph is
undefeated.

The above proposal for computing undefeated-degrees-of-support does not make the
Correspondence Theorem true.  Figure seven is a simple counterexample, with the simple
inference-graph on the right and the corresponding and/or graph on the left.  In the
simple graph, there are two status-assignments, and one assigns ÒundefeatedÓ to the left
ÒEÓ and the other assigns ÒundefeatedÓ to the right ÒEÓ, but neither ÒEÓ is assigned
ÒundefeatedÓ by both status-assignments, so both are defeated.  In the and/or graph,
there are also two status-assignments, and each assigns ÒundefeatedÓ to ÒEÓ (by making a
different argument undefeated).  Thus on the above proposal, ÒEÓ would be undefeated
in the and/or inference-graph, but defeated in the simple inference-graph.

Figure 7. A counterexample to the Correspondence Theorem.
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This example makes it clear that the difficulty lies in the fact that, in the and/or graph,
there is no argument that comes out undefeated on both assignments.  Each simple
inference-graph can be rewritten as an and/or graph, and then each node of the and/or
graph corresponds to a set of nodes of the simple graph.  A node of the simple inference-
graph, on the other hand, corresponds to an argument in the and/or graph.  An argument
is a kind of connected sub-tree of the graph.  More precisely:

An argument from an and/or inference-graph G for a node N is a subset A of the
nodes and support-links of the graph such that (1) if a node in A  has any support-
links in G, exactly one of them is in A, (2) if a support-link is in A then the nodes in
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its support-link-basis are also in A, and (3) N is in A.



Nodes in the simple inference-graph correspond one-one to arguments in the and/or
inference-graph.  The definition of a partial status-assignment for and/or graphs just
amounts to saying that a node is assigned ÒundefeatedÓ if it is either an initial node or
some argument for it consists of nodes and links that are assigned ÒundefeatedÓ, and it is
assigned ÒdefeatedÓ if it is not an initial node and every argument for it contains a link
that is assigned ÒdefeatedÓ.  This suggests that the correct analysis of defeat-status for
and/or inference-graphs should be:

An argument is undefeated relative to an and/or inference-graph iff every status assign-
ment assigns a non-zero value to  all nodes and links in the argument.

The strength of an argument is the minimum of the node-strengths of the members of
input contained in it and the reason-strengths of the support-link-rules of the support-
links contained in it.

The undefeated-degree-of-support of a node of an and/or inference-graph is the
maximum of the strengths of the undefeated arguments for it.

With this definition it becomes simple to prove the Correspondence Theorem by induction
on the length of the arguments.  To compute undefeated-degrees-of-support efficiently,
we can store the list of arguments for a node along with the node, however computing
and updating the lists of node-arguments becomes computationally expensive in complex
inference-graphs.  We can instead do the computation recursively without constructing
node-arguments.  To see how this works, first consider the simplified case where all
strengths are 1 or 0.  In that case, we can just talk about nodes being defeated (having
undefeated-degree-of-support 0) or undefeated (having undefeated-degree-of-support 1.0).
This can be characterized recursively as follows:

A node is undefeated iff either (a) it is an initial node, or (b) it has a support-link that
(1) has no defeating status-assignment and (2) has a basis consisting of undefeated-
nodes.

Generalizing this to attach arbitrary values to strengths, undefeated-degrees-of-support
can be characterized recursively as follows:

The undefeated-degree-of-support of an initial node is 1.  The undefeated-degree-of-
support of a non-initial node is the maximum, over those of its support-links having
no defeating status-assignments, of the minimum of the support-link-strength and the
undefeated-degrees-of-support of its basis; or 0 if it has no support-links without
defeating-assignment-trees.

This allows us to compute undefeated-degrees-of-support recursively as follows.

(1)  Find all support-links that have lost or acquired defeating status-assignments.
This is the set of altered-links.

(2)  Let N0 be the set of support-link-targets for the altered-links, and let N be the set
of inference-descendants of N0.  For each member of N, set its undefeated-
degree-of-support in terms of those of its support-links that do not have
defeating status-assignments and whose bases are disjoint from N (set it to 0 if
there are none).

(3)  For each node in N, if it has a nonzero undefeated-degree-of-support, then for
each of its consequent-links L that have no defeating status-assignments,
compute a undefeated-degree-of-support for the target of L as the minimum of
the support-link-strength of L and the undefeated-degrees-of-support of its basis.
If that is greater than the existing undefeated-degree-of-support, recurse that
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change through the node-descendants of the target using altered-links.



With the understanding that defeat-statuses will be computed as described, the inference-
graph will consist of a set of inference-nodes and support-links.  A support-link is a
data-structure encoding an inference, and it has slots for the following information:

¥ support-link-target Ñ the inference-node supported by the link;
¥ support-link-basis Ñ the list of inference-nodes from which the inference is

made;
¥ support-link-rule Ñ the reason licensing the inference; this can be either a sub-

stantive reason or a keyword naming a reason;
¥ defeasible? Ñ T if the inference is a defeasible one, and NIL otherwise;
¥ support-link-defeaters Ñ if the inference is defeasible, the set of inference-nodes

having the syntactically appropriate form to defeat it (this ignores considerations
of strength);

¥ defeating-assignment-trees Ñ explained below;
¥ support-link-discount-factor Ñ used in prioritizing reasoning, and discussed

below in connection with the inference-queue;
¥ support-link-nearest-defeasible-ancestors Ñ defined below;
¥ support-link-strength Ñ a number between 0.0 and 1.0;
¥ support-link-conclusive-defeat-status Ñ T if there is a deductive node that

defeats the link, NIL otherwise.

  An inference-node N  is a data-structure encoding the following information:
¥ the node-sequent Ñ in the most common case where N encodes the conclusion

of an inference, this is the sequent inferred; in some cases N will encode nondox-
astic input, specifically percepts and desires, and their contents will be encoded
as sequents;

¥ the node-formula Ñ the sequent-formula of the node-sequent;
¥ the node-supposition Ñ the sequent-supposition of the node-sequent;
¥ the node-kind Ñ :inference, :percept, or :desire;
¥ support-links Ñ the support-links supporting the node;
¥ node-justification Ñ if the node has no support-links, this is a keyword describ-

ing its justification;
¥ consequent-links Ñ the list of support-links for which this node is a member of

the support-link-basis;
¥ old-undefeated-degree-of-support Ñ the undefeated-degree-of-support prior to

the last computation of defeat-statuses;
¥ maximal-degree-of-support Ñ the maximal strength of the support-links, used to

verify that a node has adequate support for an interest-discharge;
¥ node-defeatees Ñ the list of support-links L such that N is a node-defeater of L;
¥ the undefeated-degree-of-support Ñ the undefeated degree-of-support;
¥ node-ancestors Ñ the list of inference-nodes used in arguing to this node;
¥ nearest-defeasible-ancestors Ñ the list of node-ancestors inferred by reasoning

defeasibly and from which all subsequent reasoning to N is deductive;
¥ answered-queries Ñ the list of queries (see below) answered by the node;
¥ generated-interests Ñ if the node encodes a supposition, this is the list of inter-

ests generated from it;
¥ generating-interests Ñ if the node encodes a supposition, this is the list of inter-

ests that gave rise to the supposition;
¥ cancelled-node Ñ  T if N has been cancelled, NIL otherwise;
¥ discounted-node-strength Ñ used in prioritizing reasoning, and discussed below

in connection with the inference-queue;
¥ processed? Ñ T if the node has been processed (see below), NIL otherwise;
¥ discharged-interests Ñ lists the interests discharged by the conclusion;
¥ interests-discharged? Ñ T if the conclusion has been used to discharge interests,

and NIL otherwise;
¥ node-c-list Ñ explained below;
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¥ node-queue-node Ñ if the node is currently on the inference-queue, this lists the



queue-node enqueing it;
¥ enabling-interests Ñ if the node is inferred by discharging interest-links, this is

the list of resultant-interests of those interest-links;
¥ generated-defeat-interests Ñ the list of interests in defeaters for the inference to

N.

Using simple inference-graphs, the list of nearest-defeasible-ancestors of a node N is
the list of the first defeasible nodes reached by working backwards along the support-links
of N (or N itself if N is a defeasible node).  In an and/or inference-graph a single node
represents a set of nodes from a simple inference-graph, and accordingly, it must have a
set of lists of nearest-defeasible-ancestors.  The slot nearest-defeasible-ancestors holds that
set of lists.  This set of lists is computed as follows:

For each support-link L for N:
¥ if L represents a defeasible inference, then {N} is is the only member of the list of

support-link -nearest-defeasible-ancestors of L;
¥ otherwise, the union of each member of the crossproduct of the sets of nearest-

defeasible-ancestors of the support-link-basis of L is inserted into the list of
support-link-nearest-defeasible-ancestors of L.

The nearest-defeasible-ancestors of N is the union of the support-link-nearest-
defeasible-ancestors for all support-links of N.

For example, consider the inference-graph of figure eight.  Dashed arrows indicate defeasible
inferences and solid arrows indicate deductive inferences.  Accordingly, the list of nearest-
defeasible-ancestors for E is {{E}}, and similarly for FÐL.  The list of nearest-defeasible-
ancestors for B is {{E,F},{G,H}}, and that for C is {{I,J},{K,L}}.  Finally, the list of nearest-
defeasible-ancestors for A is {{E,F,I,J},{E,F,K,L},{G,H,I,J},{G,H,K,L}}.

B
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E F G H I J K L

M N O P Q R S T

Figure Nearest-defeasible-ancestors.

We can also define:

N is a deductive node  iff the list of its nearest-defeasible-ancestors is empty.

Epistemic cognition is performed by a flag-based reasoner.  Such a reasoner consists of
two semi-autonomous modules Ñ a monotonic reasoner and a module that continually
updates defeat-statuses as new inferences are made.  The monotonic reasoner builds the
inference-graph, and the defeat-status computation is then applied to the nodes of the
inference-graph.  The monotonic reasoner is an interest-driven reasoner, reasoning forwards
from premises, perceptual inputs, and desires, and backwards from queries included in
ultimate-epistemic-interests.  The defeat-status computation is based upon the analysis of
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defeat-status proposed above.  I will begin by discussing the defeat-status computation.



2.  The Defeat-Status Computation

OSCAR employs an efficient algorithm for generating the status assignments used for
computing defeat-status (i.e., the undefeated-degree-of-support).  This results from noting
that status assignments can be generated in a semi-recursive manner.  For this purpose, it
is convenient to redefine (partial) status assignments to be functions assigning either a
number (the undefeated-degree-of-support) or ÒunassignedÓ (represented by NIL in the
implementation):

σ is a partial status assignment iff σ is a function assigning ÒunassignedÓ or real num-
bers between 0 and 1 to a subset of the nodes of an inference-graph and to the
support-links of those nodes in such a way that:
1. σ assigns its maximal-degree-of-support to any initial node;
2. If σ assigns a numerical value α  to a defeat-node for a support-link and assigns a

numerical value less than or equal to α to some member of the link-basis, then σ
assigns 0 to the link;

3. Otherwise, if σ assigns numerical values to every member of the link-basis of a link
and every link-defeater for the link, σ assigns to the link the minimum of the
strength of the link-rule and the numbers σ assigns to the members of the link-
basis;

4. If every support-link of a node is assigned 0, the node is assigned 0;
5. If some support-link of a node is assigned a value greater than 0, the node is

assigned the maximum of the values assigned to its support-links;
6. If every support-link of a node that is assigned a value is assigned 0, but some

support-link of the node is not assigned a value, then the node is not assigned a
value;

7. σ assigns ÒunassignedÓ to a support-link if it does not assign 0 to any member of
the support-link-basis, it does not assign to any support-link-defeater a number
greater than a number assigned to a member of the support-link-basis, and it either
assigns ÒunassignedÓ to some member of the support-link-basis or to some
support-link-defeater;

8. σ assigns ÒunassignedÓ to a node if some support-link for the node is assigned
ÒunassignedÓ, and all support-links not assigned ÒunassignedÓ are assigned 0.

If σ and η are partial status assignments, σ is a proper sub-assignment of η  iff σ and η
have the same domain, σ ≠ η, and for every node or link to which σ assigns something
other than ÒunassignedÓ, η assigns the same value.

σ is a status assignment  iff σ is a partial status assignment and σ is not a proper sub-
assignment of any other partial status assignment.

Given a partial assignment to a subset of the inference-nodes and support-links of the
inference-graph and a set of stipulated assignments arb to some additional nodes, define
the assignment-closure of arb and that assignment to be the minimal partial assignment
containing arb and the given partial assignment, or NIL if there is none.  This can be
constructed by recursively applying the following rules until no further inference-nodes
or support-links receive assignments or some inference-node or support-link receives
inconsistent assignments:

¥ if some member of the support-link-defeaters has been assigned a numerical value
greater than or equal to a numerical value assigned to some member of the link-
basis or to the strength of the support-link-rule, assign 0 to the link;

¥ otherwise, if all support-link-defeaters and all members of the support-link-basis
have been assigned values:
¥ if some member of the support-link-basis of a support-link has been assigned
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ÒunassignedÓ, assign ÒunassignedÓ to the link;



¥  otherwise:
¥ if some support-link-defeater for the link has been assigned ÒunassignedÓ,

assign ÒunassignedÓ to the link;
¥ otherwise, let val be the minimum of the strength of the support-link-rule

and the numbers assigned to the members of the link-basis, and assign
val to the link;

¥ if some support-link is assigned two different values, the assignment-closure is
NIL;

¥ if every support-link of a node is assigned 0, the node is assigned 0;
¥ if some support-link of a node is assigned a numerical value greater than 0, and

every support-link of the node is assigned some value, the node is assigned the
maximum of the numerical values assigned to its support-links;

¥ if every support-link of a node is assigned some value, and every support-link of
the node that is assigned a numerical value is assigned 0, but some support-link of
the node is assigned ÒunassignedÓ, then the node is assigned ÒunassignedÓ.

Before discussing the algorithm for generating all maximal partial-assignments, consider
a related (but simpler) algorithm for producing all total assignments, where the latter are
defined as follows:

A total assignment is a partial assignment that does not assign ÒunassignedÓ to any
node.

The following algorithm will generate all total assignments:

¥ Let σ0 be the assignment-closure of the partial assignment that assigns Òundefeat-
edÓ to all initial nodes, and let P-ass = {σ0}.

¥ Let Ass = ∅ .
¥ Repeat the following until no new assignments are generated:

¥ If P-ass is empty, exit the loop.
¥ Let σ be the first member of P-ass:

¥ Delete σ from P-ass.
¥ Let L be a support-link which has not been assigned a status but for

which all members of the link-basis have been assigned non-zero values.
¥ If there is no such node as L, insert σ into Ass.
¥ If there is such an L then:

¥ Let S be the set of all assignments that result from extending σ by
assigning either 0 or the minimum value assigned to its link-basis to
L.

¥ Insert all non-empty assignment-closures of members of S into P-ass.
¥ If Ass is unchanged, exit the loop.

¥ Return Ass as the set of assignments.

This algorithm generates all total assignments by trying to build them up recursively
from below (ordering nodes in terms of the Òinference-ancestorÓ relation).  When this
leaves the status of a link undetermined, the algorithm considers all possible ways of
assigning statuses to that link, and later removes any combinations of such ÒaribtraryÓ
assignments whose assignment-closures prove to be inconsistent.  The general idea is that
assignments are generated recursively insofar as possible, but when that is not possible a
generate-and-test procedure is used.

To modify the above algorithm so that it will generate all maximal partial assignments,
instead of just deleting inconsistent arbitrary assignments, we must look at proper sub-
assignments of them.  When such a proper sub-assignment has a consistent assignment-
closure, and it is not a proper sub-assignment of any other consistent assignment, then it
must be included among the maximal partial assignments.  To manage this, the algorithm
must keep track of which nodes have been assigned statuses arbitrarily in the course of
constructing an assignment.  Let σ0 be the assignment-closure of the partial assignment
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that assigns ÒundefeatedÓ to all initial nodes.  Let us take an Òannotated-assignmentÓ to



be a pair 〈σ,A〉  where A is an arbitrary assignment to some set of nodes and links, and σ is
the assignment-closure of σ0∪ A.  The algorithm constructs annotated-assignments.
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COMPUTE-ASSIGNMENTS
¥ Let σ0 be the assignment-closure of the partial assignment that assigns its degree of

justification to any initial node, and let P-ass = {〈σ0,∅〉 }.
¥ Let Ass = ∅ .
¥ Repeat the following until an exit instruction is encountered:

¥ If P-ass is empty, exit the loop.
¥ Let 〈σ ,A〉  be the first member of P-ass:

¥ Delete 〈σ ,A〉  from P-ass:
¥ Let L be a support-link that has not been assigned a status but for which

all members of the link-basis have been assigned non-zero values.
¥ If there is no such link as L, insert 〈σ,A〉  into Ass.
¥ If there is such an L then:

¥ Let Ass* be the set of all A∪ X* such that X* is an arbitrary assignment
of either 0, ÒunassignedÓ, or the minimum value assigned to its link-
basis to L.

¥ Let S be the set of all maximal sub-assignments S* of members of
Ass* such that the assignment-closure of S*∪σ 0 is non-empty.

¥ For each member A of S:
¥ If any member of P-ass is a sub-assignment of A, delete it from P-ass.
¥ If any member of Ass is a sub-assignment of A, delete it from Ass.
¥ If A is not a sub-assignment of any member of P-ass or Ass, insert A

into P-ass.
¥ Return as the set of assignments the set of all σ such that for some A,  〈σ,A〉  is in

Ass.

The correctness of this algorithm turns on the following observations:
(1) Every partial assignment can be generated as the assignment-closure of the assignment
to the initial nodes and an arbitrary assignment to some otherwise undetermined links.
(2) If a partial assignment is inconsistent, so is every extension of it.
The algorithm makes use of (1) in the same way the previous algorithm did.  In light of
(2), in ruling out inconsistent assignments, we can shrink the search space by ruling out
inconsistent sub-assignments and then only test for consistency the extensions of the
remaining consistent sub-assignments.

Although this algorithm is much more efficient than a brute-force approach, it too
encounters an efficiency problem.  This algorithm constructs assignments for all nodes of
the inference-graph simultaneously.    To illustrate, consider the four-way collective defeat
of figure ten.  The preceding algorithm for computing assignments produces four assign-
ments (one assigning ÒdefeatedÓ to each of nodes 5,6,7,8), in 0.07 seconds.  But when we
consider composite problems consisting of multiple instances of this single problem, the
situation deteriorates rapidly:

Figure 10 0.07 sec
4 assignments

2 instances of #10 1.20 sec (increase by a factor of 17.14)
16 assignments

3 instances of #10 18.24 sec (×260.57)
64 assignments

4 instances of #10 310.67 sec (×4438.14)
256 assignments
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9 10 11 12

Figure 10. Four-way collective-defeat.

There is a better way of doing the computation.  The different parts of the composite
problem are really separate subproblems, and it should be possible to separate the compu-
tations, which would result in a linear increase in computational difficulty rather than an
exponential one.  Note that in realistic cases, this will be important, because the inference-
graph of a real agent will generate a large base-assignment consisting of the assignment-
closure of an assignment of ÒundefeatedÓ to the initial nodes, and then a possibly large
number of small independent problems consisting of collective defeat and kindred phe-
nomena, each generating multiple extensions to the base assignment.  It should be possible
to handle each of these sets of multiple extensions independently, rather than lumping
them all together.

Let us define the inference/defeat-ancestors of a support-link to be the set of inference-
nodes and support-links that can be reached by working backwards via support-links
and defeat-links.  Precisely:

node is an inference/defeat-ancestor of link iff either (1) node is a member of the link-
basis of link or of a support-link that is an inference-defeat-ancestor of link, or (2)
node is a defeater for link or for a support-link that is an inference-defeat-ancestor
of link.

A support-link L is an inference/defeat-ancestor of link iff L is a support-link for an
inference-node that is an inference/defeat-ancestor of link.

The inference/defeat-ancestors of a node are its support-links and their infer-
ence/defeat-ancestors.

In computing the defeat-status of a node or link, the only nodes and links that are
relevant are its inference/defeat-ancestors.  When we are presented with different sub-
problems embedded in a single inference-graph, we can divide the inference-graph into
regions as in figure 11.  Here D is the set of nodes and links assigned statuses by the
base-assignment.  The Òtriangle-setsÓ A, B, and C represent isolated subproblems.  They
are characterized by the fact that they are minimal sets X such that every inference/defeat-
ancestor of a member of X is in either X or D.  For the purpose of computing the
defeat-statuses of the members of the triangle-sets, we can treat the A∪ D, B∪ D, and C∪ D
as separate inference-graphs.  This will yield the same value for the defeat-status as a
computation based upon the entire inference-graph.
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A B C

Figure 11. Triangle-sets.

The construction of triangle-sets can be made recursive, because there may be further
triangle-sets that sprout above the existing ones.  Notice, however, that higher-level triangle-
sets must be relativized to assignments to the lower-level triangle-sets rather than to the
lower-level triangle-sets themselves.  This is because different assignments to a lower-level
triangle-set may leave different sets of nodes unassigned and candidates for inclusion in a
higher-level triangle-set.

A simple way to conceptualize this is in terms of an assignment-tree.  The base of an
assignment-tree is the base-assignment.  That divides into a set of tree-nodes representing
triangle-sets.  Each of those tree-nodes gives rise to a set of assignments.  Those assignments
divide in turn into a new set of tree-nodes representing triangle-sets, and so on, as
diagrammed in figure 12.  This can be accommodated formally by taking an assignment-tree
to be a data-structure consisting of an assignment and the list of resulting triangle-sets,
and taking a triangle-set to be a data-structure consisting of a set of inference-nodes and
support-links (its domain) and the list of assignment-trees generated by the assignment-
closures of maximal-consistent assignments to the inference-nodes and support-links in
the triangle-sets.  For the purpose of evaluating the defeat-statuses of the nodes of the
inference-graph, we can construct the assignment-tree global-assignment-tree generated by
the base-assignment.  Then a n inference-node node is undefeated iff the inference-graph
contains an argument for node which is such that no assignment in global-assignment-tree
assigns 0 or ÒunassignedÓ to  any nodes or links in the argument
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The complete assignments operative in a triangle-set will be the result of appending
all of the assignments on the branch of the assignment-tree leading from the base assignment
to the triangle-set, and then appending to that the assignments to the triangle-set.  The list
of assignments on the branch leading to the triangle-set, beginning with the base assignment,
will constitute the ancestor-assignments of the triangle-set.  These will consist of the assign-
ment to the parent-tree, and the assignment to its parent-tree, and so on.  These are
computed recursively by working backwards through the tree.  The assignment-closure
of a new partial assignment must accordingly be understood as relative to an assignment-
tree.  A node or link has a defeat-status in a tree iff it is assigned a status either by the
assignment of the tree or one of its ancestor assignments.

Given an assignment-tree, the following returns a list of triangle-domains (taken to be
sets of support-links), each ordered so that the link generating it is the first member:

COMPUTE-TRIANGLE-DOMAINS  tree
¥ Let X be the set of all consequent-links of inference-nodes in the domain of the

assignment of tree that do not have defeat-statuses in tree but whose support-link-
bases consist of nodes that do have defeat-statuses in tree.

¥ If X is empty, return the empty set.
¥ If X is nonempty, let triangle-domains be empty.  Then for each link in X:

¥ Let triangle be the set of inference/defeat-ancestors of link that do not have
defeat-statuses in tree.

¥ If link is a member of triangle, and there is no triangle* already in triangle-
domains such that the first member of triangle* is a member of triangle, then
insert triangle into triangle-domains, ordering the members of triangle so that
link is the first member.

¥ Return the list triangle-domains.

global-assignment-tree is then computed by applying the following algorithm, with no
arguments.  Each time a triangle-set is constructed and assignments to it are computed,
COMPUTE-ASSIGNMENT-TREE is called recursively with arguments listing the assignment
to the domain of the triangle-set and the parent-tree.

COMPUTE-ASSIGNMENT-TREE optional-arguments: assignment parent-tree
¥ If no values are provided for the optional-arguments:

¥ Define assignment to be the assignment-closure of the partial assignment that
assigns ÒundefeatedÓ to all initial nodes.

¥ Let tree be a new assignment-tree whose assignment is assignment and whose
parent-tree is parent-tree (if the latter is provided).

¥ Let triangles be the list of triangle-domains computed by applying COMPUTE-
TRIANGLE-DOMAINS to tree.

¥ Set the list of triangle-sets of tree to be the result of applying COMPUTE-TRIANGLE-
SET to each member of triangles together with tree.

COMPUTE-TRIANGLE-SET triangle-domain tree
¥ Let S be the set of all maximal consistent assignments to triangle-domain relative to

tree, computed by applying COMPUTE-ASSIGNMENTS-TO-DOMAIN to tree and
triangle-domain,

¥ Construct triangle-set to be the triangle-set whose domain is triangle-domain and
whose list of assignment-trees are generated by applying COMPUTE-ASSIGNMENT-
TREE to each member ass of S and tree.

COMPUTE-ASSIGNMENTS-TO-DOMAIN tree triangle
¥ Let link be the first member of triangle.
¥ Where min-val is the minimum of the reason-strength of the support-link-rule of

link and the values assigned to the members of the support-link-basis of link, let
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¥ Let P-ass  be the set of all pairs 〈closure,A〉  where A is in Ass*, closure  is the
assignment-closure of A relative to tree, and closure  is nonempty.

¥ If P-ass is empty, return the list whose only member is the assignment-closure of
{〈link,ÓunassignedÓ〉} relative to tree.

¥ If P-ass is nonempty:
¥ Let Ass = ∅ .
¥ Repeat the following until an exit instruction is encountered:

¥ If P-ass is empty, exit the loop.
¥ Let 〈σ ,A〉  be the first member of P-ass:

¥ Delete 〈σ ,A〉  from P-ass:
¥ Let L be a link in triangle that has not been assigned a status by σ, but

for which all members of the support-link-basis have been assigned
non-zero numerical values.

¥ If there is no such link as L, insert 〈σ,A〉  into Ass.
¥ If there is such an L then:

¥ Let Ass* be the set of all A∪ X* such that X* is an arbitrary assignment
to L of 0 or of the minimum of the reason-strength of its support-link-
rule and the values assigned to the members of its support-link-basis.

¥ Let S be the set of all maximal sub-assignments S* of members of Ass*
such that the assignment-closure of S* relative to tree  is non-empty.

¥ For each member A of S*, let closure be its assignment-closure relative
to tree:
¥ If any member of P-ass is a sub-assignment of closure, delete it from

P-ass.
¥ If any member of Ass is a sub-assignment of closure, delete it from

Ass.
¥ If A is not a sub-assignment of any member of P-ass or Ass, insert

〈closure,A〉  into P-ass.
¥ Return as the set of assignments the set of all σ such that for some A,  〈σ,A〉  is

in Ass.

The difference between the performance of the algorithms is illustrated dramatically
by considering composites of figure ten again.  For a single instance of that problem, the
original assignments-algorithm is the same speed as the assignment-tree-algorithm.  But
when we consider composite problems, the comparison changes dramatically:

assignments- assignment-tree-
algorithm algorithm

Figure 10 0.07 sec 0.07 sec
4 assignments 4 branches

2 instances of #10 1.20 sec (×17.14) 0.15 sec (×2.14)
16 assignments 8 branches

3 instances of #10 8.24 sec (×260.57) 0.25 sec (×3.57)
64 assignments 12 branches

4 instances of #10 310.67 sec (×4438.14) 0.35 sec (×5.0)
256 assignments 16 branches

The difference is attributable to the fact that n copies of a simple problem that produces k
assignments and an assignment-tree with k branches will produce nk assignments but will
produce an assignment-tree with only n⋅k branches.  The times required to run the algorithms
will be roughly proportion to the number of assignments and branches produced.  The
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and later discovered to be inconsistent and so pared from the tree or dropped from the
list of assignments.  A set of test problems has been produced which encode the inference-
graphs of figures 2, 3, 4, 5, 7, 8, 9, 10, 14, 18 from chapter three of Cognitive Carpentry, and
composites thereof.  The results are as follows:

                            assignments-      assignment-tree-
algorithm          algorithm

Problem #2 0.01 sec 0.01 sec
1 assignment 1 branch

Problem #3 0.02 sec 0.01 sec
2 assignments 2 branches

Problem #4 0.03 sec 0.04 sec
2 assignments 2 branches

Problem #5 0.04 sec 0.03 sec
2 assignments 2 branches

Problem #7 0.04 sec 0.03 sec
2 assignments 2 branches

Problem #8 0.05 sec 0.05 sec
3 assignments 3 branches

Problem #9 0.01 sec 0.01 sec
1 assignment 1 branch

Problem #10 0.01 sec 0.01 sec
1 assignment 1 branch

Problem #11 0.01 sec 0.01 sec
1 assignment 1 branch

Problem #12 0.02 sec 0.02 sec
2 assignments 2 branches

Problem #14 0.02 sec 0.02 sec
1 assignment 1 branch

Problem #18 0.11 sec 0.07 sec
1 assignment 1 branch

Problem #19 0.53 sec 0.18 sec
composite of 18, 18 1 assignment 2 branches

Problem #20 1.71 sec 0.30 sec
composite of 18, 18, 18 1 assignment 3 branches

Problem #21 4.63 sec 0.45 sec
composite of 18, 18, 18, 18 1 assignment 4 branches

Problem #22 0.29 sec 0.06 sec
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Problem #23 1.39 sec 0.11 sec
composite of 2, 3, 4, 5 8 assignments 6 branches

Problem #24 27.40 sec 0.22 sec
composite of 2, 3, 4, 5, 7, 8 48 assignments 11 branches

Problem #25 34.92 sec 0.26 sec
composite of 2, 3, 4, 5, 7, 8, 48 assignments 13 branches

 9, 10
Problem #26 62.10 sec 0.47 sec
composite of 2, 3, 4, 5, 7, 8, 48 assignments 15 branches
  9, 10, 14, 18

We have an efficient algorithm for computing defeat-statuses for an inference-graph
that has already been constructed.  However, that is an artificial problem.  A rational
agent must construct its inference-graph one support-link at a time, and update the defeat-
statuses with the addition of each link.  The result of updating the assignment-tree with
the addition of each link should be the same as the result of computing the assignment-tree
as above for the completed inference-graph.

One of the virtues of the assignment-tree algorithm is that it leads to an efficient
procedure for updating the defeat-statuses of the nodes of the inference-graph in response
to adding new support-links.  When a link is added to the inference-graph, the only
pre-existing nodes and links that can be affected are the inference/defeat-descendants of
the support-link-target of the new link.  The latter concept is defined as follows:

The inference/defeat-descendants of a support-link consist of its target and all of the
inference/defeat-descendants of its target;  the inference/defeat-descendants of an
inference-node consist of (1) all the consequent-links of the node and all the infer-
ence/defeat-descendants of those consequent-links, and (2) all the node-defeatees
of the node and all the inference/defeat-descendants of those node-defeatees.

When we add new links, the changes to the inference-graph are confined to the new
links and their inference/defeat-descendants.  Call these the affected-nodes and affected-links.
If the affected-nodes have no defeatees, we can just compute the assignments to the
affected-nodes and affected-links at any point in the assignment tree at which they become
computable, and add those assignments to the assignment-tree.  Otherwise, we must
update global-assignment-tree.

Updating a tree in response to adding a support-link is performed only if updating
the lower-order trees has not changed anything.  In updating a tree, it must first be
determined whether its assignment assigns anything to affected-nodes or affected-links.
If not, it is determined whether the newly added link has a computable defeat status.  If it
does the assignment of the tree is redefined to be the result of adding that to the treeÕs
assignment and forming the assignment-closure.  Then the triangle-sets of the tree are
recomputed.  If the new link does not have a computable status, the triangle-sets of the
tree are updated.  If these are unchanged, the assignment-trees of the triangle-sets are
updated, and so on.

In updating a triangle-set, a check is made to determine whether any of the new links
have computable statuses in the tree or whether any other affected-nodes or affected-links
already occur in its domain.  If neither of these conditions is satisfied, its assignment-trees
are updated.  But if some members of its domain are affected, the domain must be
recomputed to be the set of inference/defeat-ancestors of the original domain.  The new
domain will contain some affected-nodes.  Then the triangle-set  must be recomputed from
scratch and the old one replaced by the new one.

In updating an assignment-tree, let ass0 be the assignment to the unaffected-nodes
and unaffected-links that are in the domain of the original assignment, and define closure
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If closure were inconsistent, then the new-links would have to render some of the
arbitrary assignments inconsistent, in which case the domain of the enclosing triangle-set
would contain affected nodes or links and so the recursion would not lead to this assignment-
tree being updated.  Hence we can assume that closure is consistent.

If closure makes the same assignments as the original assignment of the assignment-tree,
then update the treeÕs triangle-sets.  But if closure differs from the original assignment,
redefine the assignment of the assignment-tree to be closure, and recompute the triangle-sets
of the assignment-tree.  If a triangle-domain is unchanged, then update the trees of that
triangle-set.  For triangle-domains that are different from the original ones, the triangle-sets
must be computed from scratch.

Whenever we change the assignment of an assignment-tree, we must change the list of
defeating-assignment-trees for support-links whose assignments change, and recompute
the undefeated-degrees-of-support of the support-link-targets and their inference-defeat
descendants to reflect that change:

These observations produce the following pseudocode:

UPDATE-DEFEAT-STATUSES
Let affected-nodes  and affected-links consist of new-links and the inference/defeat-
descendants if members of new-links.  If every affected-node has an empty list of
node-defeatees, compute the status-assignments for the affected-nodes and affected-
links in the various subtrees of global-assignment-tree in which those status-
assignments become computable, and insert the computed values into the subtrees.
Otherwise, apply UPDATE-ASSIGNMENT-TREE to new-links, global-assignment-tree,
affected-nodes and affected-links.

UPDATE-ASSIGNMENT-TREE  links tree affected-nodes affected-links
¥ Let assignment be the assignment of tree.  If assignment does not assign statuses to

any members of affected-nodes or affected-links other than members of links:
¥ If some members of links: have computable numerical defeat-statuses relative

to tree, let closure to be the assignment-closure of that assignment to link
relative to tree.  Redefine the assignment of tree  to be the result of adding
closure to assignment, and apply RECOMPUTE-TRIANGLE-SETS to links, tree
affected-nodes and affected-links.

¥ If no members of links have computable numerical defeat-statuses val relative
to tree, apply UPDATE-TRIANGLE-SET to links, triangle-set, affected-nodes,
affected-links, and tree for each triangle-set of tree.

¥ Otherwise, let ass0 be the assignment to the unaffected-nodes and unaffected-
links that are in the domain of assignment.  Let closure be the assignment-closure
of ass0 for the affected-nodes.
¥ If closure agrees with assignment, apply UPDATE-TRIANGLE-SET to links,

triangle-set, affected-nodes, affected-links, and tree for each triangle-set of tree.
¥ Otherwise, redefine the assignment of the assignment-tree to be closure, and

apply RECOMPUTE-TRIANGLE-SETS to links, tree affected-nodes and affected-
links.

RECOMPUTE-TRIANGLE-SETS links tree affected-nodes affected-links
¥ Recompute the triangle-domains of tree.
¥ If a triangle-domain is unchanged, then apply UPDATE-TRIANGLE-SET to it

(together with links, affected-nodes, affected-links, and tree).
¥ For triangle-domains that are different from the original ones,  replace the

triangle-set by the result of applying COMPUTE-TRIANGLE-SET to the new
domain and tree.

UPDATE-TRIANGLE-SET  links triangle-set affected-nodes affected-links tree
If the domain of triangle-set does not contain any affected-links, and it does not contain
any support-links having members of affected-nodes among their support-link-bases or
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triangle-set (relative to links, affected-nodes, and affected-links).  Otherwise:
¥ Recompute the domain of triangle-set to be the set of inference/defeat-ancestors

of the original domain.
¥ Replace triangle-set in tree  by a new triangle-set constructed by applying

COMPUTE-TRIANGLE-SET to the new domain and the result of adding the
assignment of tree to its ancestor assignments.

Updating defeat-statuses is initiated whenever a new support-link is constructed (by
DRAW-CONCLUSION or DRAW-REDUCTIO-CONCLUSION, as discussed below), by executing
UPDATE-BELIEFS:

UPDATE-BELIEFS
¥ UPDATE-DEFEAT-STATUSES, letting altered-nodes be the inference-nodes that are

inference/defeat-descendants of the members of new-links.
¥ COMPUTE-UNDEFEATED-DEGREES-OF-SUPPORT, letting new-beliefs be the list of

nodes whose undefeated-degrees-of-support (i.e., defeat-statuses) increase as a
result of this computation, and new-retractions be the list of nodes whose
undefeated-degrees-of-support decrease as a result of this computation.

¥ COMPUTE-INTEREST-GRAPH-DEFEAT-STATUSES using new-beliefs and new-
retractions, letting altered-interests be the interest-graph nodes whose defeat-
statuses change.

¥ For each support-link in new-links, if its support-link-target has no support-link
not in new-links, insert the support-link-target into the inference-queue.

¥ For each member S of new-beliefs, APPLY-OPTATIVE-DISPOSITIONS-TO S and
APPLY-Q&I-MODULES-TO S.

¥ DISCHARGE-ULTIMATE-EPISTEMIC-INTERESTS new-beliefs new-retractions, letting
altered-queries be the list of queries whose query-answered-flags change value as
a result.

¥ RECOMPUTE-PRIORITIES using new-beliefs, new-retractions, altered-interests and
altered-queries, and reorder the inference-queue.

As indicated above, COMPUTE-UNDEFEATED-DEGREES-OF-SUPPORT proceeds recursive-
ly.  Reformulating the previously described algorithm in terms of defeating-assignment-
trees, we have:

COMPUTE-UNDEFEATED-DEGREES-OF-SUPPORT
¥  Find all support-links that have lost or acquired defeating-assignment-trees.

This is the set of altered-links.
¥ For each altered-node, set its old-undefeated-degree-of-support to be its current

undefeated-degree-of-support.
¥ Let N0 be the set of support-link-targets for the altered-links, and let N be the set

of inference-descendants of N0.  For each member of N, set its undefeated-
degree-of-support in terms of those of its support-links that do not have
defeating-assignment-trees and whose bases are disjoint from N (set it to 0 if
there are none).

¥ For each node in N, if it has a nonzero undefeated-degree-of-support, then for
each of its consequent-links L that have no defeating-assignment-trees, compute
a undefeated-degree-of-support for the target of L as the minimum of the
support-link-strength of L and the undefeated-degrees-of-support of its basis.  If
that is greater than the existing undefeated-degree-of-support, recurse that
change through the node-descendants of the target using altered-links.

3.  Overview of the Monotonic Reasoner

The monotonic reasoner is interest-driven, as described above.  Reasoning forwards
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two graphs meet, interests are discharged, with the result that sequents that are of interest
(as recorded in the interest-graph) are concluded and incorporated into the inference-graph.
Queries posed by practical cognition form termini in the interest-graph.  When such queries
are answered, the agent does something with the answers.  What the agent does is
determined by the purpose of the query.  This will be accomplished by storing instructions
for what to do with an answer along with the query in ultimate-epistemic-interests.  Sometimes
these instructions will produce new queries for insertion into ultimate-epistemic-interests
and thereby initiate new backwards reasoning.

Interests comes in degrees, and so do the degrees-of-support for members of the
inference-graph.  In accordance with the weakest link principle, the degree-of-support for a
support-link is the minimum of (1) the strength of the reason and (2) the maximal-
degrees-of-support for the members of the link-basis.  The maximal-degree-of-support for
an inference-node is normally the maximum of the degrees of support for its support-links.
Degrees of interest originate with the permanent members of ultimate-epistemic-interests.
When new members of ultimate-epistemic-interests are produced, the instructions for pro-
ducing them must also set their degrees of interest.  Reasoning backwards from ultimate-
epistemic-interests preserves the degree-of-interest.  In general, if a sequent in the interest-
graph is of interest for more than one reason (i.e., there are branches of the interest-graph
leading from it to more than one query in ultimate-epistemic-interests), the degree-of-interest
in the sequent is the minimum of the degrees of interest in the queries from which it
derives.  This indicates the minimal undefeated-degree-of-support an answer must have
in order to satisfy (one source of) the interest.

The reasoning recorded in the inference-graph is defeasible.  A necessary condition for
one node to defeat another is that the maximal-degree-of-support for the defeating node
be at least as great as that for the defeated node.  Defeat-statuses are the same as undefeated-
degrees-of-support, and are computed as described in section one.  A query in ultimate-
epistemic-interests is only deemed to have been answered if the answer found has an
undefeated-degree-of-support at least as great as the degree-of-interest in the query.

The basic control structure for these inference operations is the inference-queue.  This is
a queue of inferences (either backwards or forwards) waiting to be performed.  The
details of the ordering can be changed without changing the OSCAR architecture, but it is
presumed that the ordering is sensitive to degrees of support and degrees of interest.
This will be discussed in more detail below.

The basic data-structures used by epistemic cognition will be sequents, backwards
and forwards reasons, the inference-graph, the lists of conclusions and processed-conclusions,
the interest-graph, the inference-queue, and the list of ultimate-epistemic-interests.  The structure
of the inference-graph was described above.  The others are as follows:

Formulas
OSCAR uses an open-ended syntax.  That is, no definition of the set of formulas is

presupposed, but it is presupposed that formulas can be combined and constructed from
one another by using operations like conjunction, negation, or quantification.  The details
of this are contained in the file Syntax.lsp.

OSCAR assumes the following logical constants:  ~, &, v, ->, <->, @, all, some, =.  Note that
the logical constants are always quoted.  Note also that v is the lower-case letter v, so that
cannot be used as a variable for quantification.  @ is used for the undercutting symbol ⊗ ,
which may not be readily available in the character sets used by LISP.

Formulas are lists or trees of symbols.  For example, the following is a formula:

(((all x) ((P x) -> (~ (Q x)))) v ((some y) ((P y) & (R y))))

This illustrates several points.  If P is a formula, its negation is (~ P).  Quantifiers have the
form (Q var) where Q is either all or some.  Given a quantifier (Q var) and a formula P, ((Q var)
P) is a quantified formula.  We cannot just append ~ or a quantifier to the front of a
formula, because that is not a LISP list.  Instead, we must enclose the result in parentheses.
Similarly, if F is a predicate, formulas are constructed from it by constructing lists of the
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form (F x1 ... xn).  We cannot use more standard notation like F(x1 ... xn”), because that is not



a LISP list.
Formulas are treated in this way because they are easily manipulated by LISP functions.

However, it is difficult for human beings to read these expressions.  Accordingly, OSCAR
distinguishes between formulas and pretty-formulas.  Pretty-formulas are strings constructed
from formulas by the function PRETTY, and look more like standard logical notation.  For
instance, the pretty-formula corresponding to the above formula is:

"[(all x)((P x) -> ~(Q x)) v (some y)((P y) & (R y))]"

The function REFORM converts a pretty-formula into a formula.  Pretty formulas append
negations and quantifiers to subformulas rather than listing them jointly.  Pretty-formulas
also allow the use of brackets in place of parentheses for enhanced readability.

It is possible to use non-standard syntax in pretty-formulas by giving OSCAR explicit
information about how to translate them into formulas.  This is done by putting entries
into the *reform-list*.  The following is an example of a specification of the *reform-list*:

(let ((P (gensym)) (Q (gensym)) (x (gensym)) (y (gensym)) (A (gensym)) (z (gensym)) (op (gensym)))
  (setf *reform-list* nil)
  (dolist
      (pair
        (list
          ̀ ((,P throughout (,op ,x ,y)) (throughout ,P (,op ,x ,y)) (,P ,op ,x ,y))
          ̀ ((,P at ,x) (throughout ,P (closed ,x ,x)) (,P ,x))
          ̀ ((,P now) (at ,P now) (,P))
          ̀ (((it appears to me that ,Q) at ,x) (it-appears-to-me-that ,Q (closed ,x ,x)) (,Q ,x))
          ̀ ((the probability of ,P given ,Q) (the-probability-of ,P ,Q) (,P ,Q))
          ̀ ((I  have a percept with content ,Q) (I-have-a-percept-with-content ,Q) (,Q))
          ̀ ((,x < ,y) (< ,x ,y) (,x ,y))
          ̀ ((,x <= ,y) (<= ,x ,y) (,x ,y))
          ̀ ((,x = ,y) (= ,x ,y) (,x ,y))
          ̀ ((,x + ,y) (+ ,x ,y) (,x ,y))
          ̀ ((,x * ,y) (* ,x ,y) (,x ,y))
          ̀ ((,x expt ,y) (expt ,x ,y) (,x ,y))
          ̀ ((,x - ,y) (- ,x ,y) (,x ,y))
          ̀ ((,x is a reliable informant) (reliable-informant ,x) (,x))
          ̀ ((,x reports that ,P) (reports-that ,x ,P) (,x ,P))
          ̀ ((the color of ,x is ,y) (color-of ,x ,y) (,x ,y))
          ̀ ((,x and ,y collide) (collide ,x ,y) (,x ,y))
          ̀ ((the position of ,x is (,y ,z)) (position-of ,x ,y ,z) (,x ,y ,z))
          ̀ ((the velocity of ,x is (,y ,z)) (velocity-of ,x ,y ,z) (,x ,y ,z))
          ̀ ((,x is dead) (dead ,x) (,x))
          ̀ ((,x is alive) (alive ,x) (,x))
          ̀ ((,x is a dimensionless billiard ball) (dimensionless-billiard-ball ,x) (,x))
          ))
      (pushnew pair *reform-list* :test 'equal)))

The entries in the *reform-list* are triples.  The first member of a triple is the expression
that REFORM returns when applied to the pretty-formula.  The second member is formula
we want it to return instead.  The third member is the list of variables used in pattern-
matching.

Sequents
Sequents will be ordered pairs 〈X,P〉  where X is the sequent-supposition and P is the

sequent-formula.  I will generally write the sequent in the form ÒP/XÓ, which is often
easier to read.  Let us say that a sequent is concluded iff it is the node-sequent of some
node of the inference-graph of kind ÒinferenceÓ.  A sequent can be concluded without
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being justified, because the node supporting it may be defeated.  A sequent is justified to



degree δ iff it is the node-sequent of a node of the inference-graph of kind ÒinferenceÓ
whose undefeated-degree-of-support is δ.  By the principle of foreign adoptions, if a
sequent has been concluded, it can automatically be used in inferences involving more
inclusive suppositions, so it is also convenient to define a sequent Q/Y to subsume a
sequent P/X iff P = Q and Y ⊆  X, and then say that a sequent is validated iff it is subsumed
by some sequent that is concluded.  In accordance with the principle of foreign adoptions,
inferences will be from validated sequents rather than just from concluded sequents.  I
will say that a node of the inference-graph supports a sequent iff it is the node-sequent of
that node, and the node validates a sequent P/X iff for some Y such that Y ⊆  X, P/Y is the
node-sequent of that node.

Conclusions and Processed-Conclusions
The set of inference-nodes will be stored in the list of conclusions, and inference rules

will access that list rather than looking directly at the inference-graph.  One complication
arises for the appeal to conclusions.  Consider a forwards-reason having multiple premises.
For instance, suppose {P,Q} is a reason for R.  Suppose P and Q are both on the inference-queue.
If the reasoner retrieves P first, it will search the list of conclusions for Q, find it, and then
make the inference to R.  When it later retrieves Q from the inference-queue, if it searches
the list of conclusions for P, it will find it, but we do not want the reasoner to repeat the
inference to R.  To avoid this, when the reasoner retrieves one premise from the inference-
queue, in its search for the other premises, we only want it to consider conclusions that
have already been retrieved from the inference-queue.  To achieve this, the reasoner will
keep a separate list of processed-conclusions.  A conclusion will be inserted into this list
only when it is retrieved from the inference-queue.

In the interest of efficient search, conclusions and processed-conclusions are lists of
indexed data structures rather than simple lists.  They are characterized by lists of pairs
〈formula,conclusion-list〉 where formula is the sequent-formula of a node-sequent, and
conclusion-list is the list of all conclusions whose node-sequents have that sequent-formula.
It is more efficient, however, to replace the conclusion-lists by structures called Òc-listsÓ,
which encode the following information:

¥ c-list-formula
¥ corresponding-i-list
¥ c-list-nodes
¥ c-list-processed-nodes
¥ link-defeatees Ñ the list of interest-links (see below) defeated by the conclusions

in the c-list.
The c-list for a formula is the unique c-list having that formula as its c-list-formula.  The
advantage of this approach is that in LISP we can keep a record in a node of the c-list in
which the node is included, and as the node is updated by adding support-links, no
changes have to be made to the c-list.  This makes it easy to move back and forth between
nodes and their c-lists.

The most costly operations performed in reasoning are searches through lists of
inference-nodes and interests.  Great effort has gone into minimizing search in OSCAR.
The use of c-lists is one mechanism for doing this.  When searching for an inference-node
supporting a sequent, we first search for the c-list-for the sequent-formula, and then we
need only search the list of c-list-nodes of that c-list.

Another mechanism for minimizing search involves storing interests in similar structures
called Òi-listsÓ, and to minimize the searches involved in discharging interest, whenever a
c-list or i-list is constructed, the ÒcorrespondingÓ i-list and c-list involving the same formula
is found (if it exists) and recorded in the slots Òcorresponding-i-listÓ and Òcorresponding-
c-listÓ.  Once the corresponding i-list and c-list are found, the search never has to be
repeated.

Rather than storing c-lists and i-lists in lists, they are actually stored in a discrimination-
net.  This is a form of indexed database that can be searched more efficiently than a list.
The details of this are described in chapter six.
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Querying epistemic cognition is done by inserting a query into ultimate-epistemic-interests.
A query will be a data-structure encoding the following:

¥ the query-formula Ñ a formula expressing the question asked.
¥ query-strength Ñ the degree-of-interest, a number between 0 and 1.
¥ query-queue-node Ñ if the query is currently on the inference-queue, this lists the

queue-node enqueing it.
¥ deductive-query Ñ T if the objective of the query is to determine whether the

query-formula is deductively provable; NIL otherwise.
¥ the positive-query-instruction Ñ an instruction for what to do with an answer.
¥ the negative-query-instruction Ñ an instruction for what to do if an answer is

withdrawn (explained below).
¥ query-answers Ñ the list of all inference-nodes whose node-sequents constitute

answers to the query.
¥ answered? Ñ the Òquery-answered-flagÓ; this is T if any of the query-answers is

justified to a degree greater than or equal to the degree-of-interest, NIL otherwise.
¥ query-interest Ñ the interest for the query-formula.  Interests are discussed

below.

There are two kinds of queries.  Sometimes epistemic cognition is queried about whether
something is true.  In this case, the query-formula is a closed formula, and the query is a
definite query.  Sometimes epistemic cognition is asked to find something (anything) of a
certain general sort (e.g., a plan).  In this case, the query-formula contains free variables.
For example, in instructing epistemic cognition to try to find a plan satisfying some
condition C, the query-formula will be –x is a plan satisfying condition C≠, where x is a
free variable.  Such a query is an indefinite query.  In the implementation, the query-formula
for an indefinite query is constructed using a special quantifier: –(?x)ϕ≠.  An answer to a
definite query will be an inference-node supporting the query-formula, and an answer to
an indefinite query will be an inference-node supporting an instance of the query-formula.

It can happen that an answer to a query is found, and the positive-query-instruction
executed, but the answer is later retracted.  In some cases there may be nothing that can
be done about that.  For example, if the answer led to the adoption and execution of a
plan, there may be no way to take it back.  If there is, that can be done by adopting
another plan, using the same planning procedures.  In special cases, there may be a
predictable way of repairing or partially repairing the results of the mistake, and that can
be built into the instructions accompanying the query.  To accommodate this, we allow
the query to include instructions both for what to do when an answer is found Ñ the
positive-query-instruction Ñ and for what to do if an answer is retracted Ñ the negative-
query-instruction.  Either or both of these instructions can be omitted.

Some queries will be built into ultimate-epistemic-interests from the start, without having
to be inserted by practical cognition.  These will comprise the list of permanent-ultimate-
epistemic-interests.  Among the permanent-ultimate-epistemic-interests will be an interest in
finding suitable goals.  Here the interest is in finding situation types having positive
expected likability.  The instructions will be that when such a situation type is found,
interest in finding minimally acceptable plans for achieving it is inserted into ultimate-
epistemic-interests, and if the reasoner subsequently retracts the belief that a situation type
has a positive expected likability, then the latter interest is withdrawn from ultimate-
epistemic-interests.

In the doxastic implementation of practical reasoning in the OSCAR architecture, the
only way new ultimate epistemic interests are adopted is in response to instructions from
queries already in ultimate-epistemic-interests (as in figure one of chapter two).  A general
constraint on these instructions must be that whenever a new query is inserted into
ultimate-epistemic-interests, this is done using the operation ADOPT-ULTIMATE-INTEREST.
Let us say that a sequent is in interest iff it is the node-sequent of some interest-graph-node
(see below).  Then define:

ADOPT-ULTIMATE-INTEREST query
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¥ Insert query into ultimate-epistemic-interests.



¥ For each inference-node C, if C answers query, insert C into the list of query-
answers for query.

¥ If some member of the the list of query-answers for query is justified to a degree
greater than or equal to the degree-of-interest in query:
¥ Set answered? for query to T.
¥ For each adequately justified inference-node C in the list of query-answers for

query, perform the positive-query-instruction of query on the sequent-formula
of the node-sequent of C.

¥ Otherwise, set answered? for query to NIL.
¥ If the query-formula of query is not already in interest, insert query into the

inference-queue.

The details of inserting a query into the inference-queue will be discussed below.

The interest-graph
In the most general case, a backwards reason R has a list of forwards-premises, a list

of backwards-premises, a desired-conclusion, and a list of variables to be used in pattern
matching.  If R is applicable to a desired-conclusion S, the reasoner matches S against the
desired-conclusion, obtaining instantiations for some of the variables and thereby generat-
ing an interest-scheme 〈X,Y,S〉 .  The reasoner then looks for ways of instantiating the
forwards-premise schemes X so that they are validated by inference-nodes that have
already been drawn and are supported to the requisite undefeated-degree-of-support.  A
constraint on backwards reasons is that all the variables occur in the forwards premises
and the conclusion, so once instances of the forwards-premises and the conclusion have
been obtained, that uniquely determines the corresponding instance of the backwards-
premises.  Thus the reasoner obtains an instance 〈X*,Y*,S〉  of R where the members of X*
are validated to the requisite undefeated-degree-of-support.  The reasoner then reasons
backwards and adopts interest in the members of Y*.

Subsequently, when a new conclusion C is drawn, DISCHARGE-INTEREST-SCHEMES
checks the interest-scheme 〈X,Y,S〉  to see whether C can be used to instantiate some
member of X, and if so whether the instantiation can be extended so that all members of
X are instantiated to validated sequents.  This yields a new instance 〈X**,Y**,S〉  of R
where, once again, the forwards-premises X** are validated to the requisite undefeated-
degree-of-support, and then the reasoner reasons backwards and adopts interest in the
members of Y**.

To implement the above reasoning, the interest-scheme 〈X,Y,S〉  must be stored some-
where so that it can be accessed by DISCHARGE-INTEREST-SCHEMES.  Along with it
must be stored the list of variables remaining to be instantiated, and the undefeated-
degree-of-support required for validating instances.  Accordingly, I will take an interest-
scheme to be a data structure encoding the following information:

¥ the instantiated-reason.
¥ the instance-function Ñ discussed below.
¥ the forwards-basis Ñ a list of formulas.
¥ the backwards-basis Ñ a list of formulas.
¥ the instance-consequent Ñ the sequent of interest.
¥ the target-interest Ñ the interest-graph node recording interest in the instance-

conclusion.
¥ the instance-variables Ñ the set of variables to be used in finding instances of the

forwards-basis by pattern matching.
¥ the instance-strength Ñ the degree of interest in the consequent, a number

between 0 and 1.
¥ instance-supposition Ñ the sequent-supposition of the instance-consequent.
¥ deductive-instance Ñ T if the interest is in finding a deductive proof of the

instance-consequent; NIL otherwise.
¥ scheme-discharge Ñ if the inference-rule involves discharging a supposition

(e.g., conditionalization), this is the supposition to be discharged.
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¥ scheme-generating-node Ñ if the interest scheme is generated by a supposition



(as in conditionalization or reductio-ad-absurdum), this is the node encoding the
supposition.

I will abbreviate reference to interest-schemes by writing the septuple consisting of the
values of the first seven slots.

In most backwards-reasons, the list of forwards-premises is empty (i.e., they are ÒsimpleÓ
backwards reasons).  In that case, instantiating the reason-conclusions uniquely determines
the instantiation of the backwards-premises, and so no interest-schemes need be stored.
The reasoner immediately adopts interest in the instantiated backwards-premises.

Reasoning backwards will build the interest-graph .  The nodes of the interest-graph  are
either queries from ultimate-epistemic-interests or record sequents derivatively of interest.
The latter will be referred to as ÒinterestsÓ.  The links either represent backwards reasons
or connect sequents with queries for which they are answers.  A link connects one node
Ñ  the resultant-interest Ñ with another interest in a sequent representing the first as yet
unestablished backwards-premise of the backwards reason.  Backwards reasoning begins
with the resultant-interest and works backwards to the link-interest, adding it to the
interest-graph  if necessary.  When the link-interest is established by drawing a conclusion,
the conclusion is added to the list of supporting-nodes for the link.  If there are no
backwards-premises remaining to be established, the resultant-interest is inferred from
the supporting-nodes.  If there are backwards-premises remaining to be established, a
new interest-link is constructed having the first of them as its link-interest.  This is repeated
until all the backwards-premises are established.

When an argument is found for a link-interest, the reasoner checks to see whether it is
a deductive argument.  A deductive argument is one in which none of the reasons employed
are defeasible, no input states are used as premises, and no contingent premises are used.
If the argument is deductive, the search for further arguments is cancelled.  But if the
argument is not deductive, then rather than cancelling the search for further arguments,
the priority of the search is lowered.

To accommodate all of this, the interest-links will be a set of links L encoding the
following information:

¥ the resultant-interest Ñ the interest-graph node from which the backwards reason-
ing proceeds, or the query in ultimate-epistemic-interests for which the link records
an answer.

¥ the link-interest Ñ an interest in the first remaining unestablished backwards-
premise.

¥ link-interest-formula Ñ the interest-formula of the resultant-interest.
¥ link-interest-condition Ñ an optional condition that a previously existing interest

must satisfy to be the link-interest (rather than a new link-interest being con-
structed when the link is constructed).

¥ the link-rule Ñ an indication of the rule of inference or substantive reason
employed in such an inference, or Ò:answerÓ if the resultant node is a query.  In
the latter case, the link is an Òanswer-linkÓ.

¥ the remaining-premises Ñ the list of backwards-premises (other than that
represented by the link-interest) of the link-rule that are not yet established by
nodes in the list of supporting-nodes.

¥ supporting-nodes Ñ a list of inference-nodes validating the corresponding
premises (backwards or forwards) and of adequate strength and satisfying any
applicability-conditions for the premises.

¥ link-defeaters Ñ if the link-rule is defeasible, this is the pair of c-lists for the
rebutting-defeater and undercutting-defeater for the inference described by the
link.  When the link is created, these c-lists are created with empty lists of c-list-
nodes if they do not already exist.

¥ the link-defeat-status Ñ T if some inference-node in the c-list-nodes of one of the
link-defeaters has a supposition contained in the resultant-supposition and an
undefeated-degree-of-support greater than or equal to the degree-of-interest in
the resultant-sequent; NIL otherwise.  This represents a partial computation of
defeat-status, proceeding just in terms of the validated members of the link-basis
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and the link-defeaters.  It is used to lower the priority assigned to the backwards



reasoning if L is defeated (according to this partial computation).
¥ link-strength Ñ the maximum-degree-of-interest conveyed by the link.
¥ link-generating-node Ñ if the link is generated by a supposition (e.g., in condi-

tionalization), this is the node encoding the supposition.
¥ discharged-link Ñ T if the link has been discharged by finding an inference-node

that validates the link-interest, NIL otherwise.

Interests will encode the sequents related by the interest-links.  This will not be taken to
include the queries from ultimate-epistemic-interests.  Thus the interest-graph  actually includes
both the members of interests and the queries from ultimate-epistemic-interests.  An interest
will be a data structure encoding the following information:

¥ the interest-sequent.
¥ the interest-formula Ñ sequent-formula of the interest-sequent.
¥ the interest-supposition Ñ sequent-supposition of the interest-sequent.
¥ the right-links Ñ the list of interest-links in which the interest-sequent is a mem-

ber of the link-basis.
¥ the left-links Ñ the list of interest-links for which the present interest is the

resultant-interest.
¥ the degree-of-interest in the interest-sequent Ñ a number between 0 and 1; for

non-terminal nodes this is the minimum of the degrees of interest of the interests
to which the given interest is linked by right-links.

¥ the last-processed-degree-of-interest Ñ if the reasoner has already attempted
backwards reasoning from the interest-sequent with a lower degree-of-interest,
this records that degree-of-interest.

¥ the interest-defeat-status Ñ  NIL if the defeat-status of any of the right-links is
NIL, T otherwise.

¥ discharged-degree Ñ the maximum degree of interest such that DISCHARGE-
INTEREST-IN has been run on this interest with that maximal-degree-of-support.
This is used in computing priorities.

¥ deductive-interest Ñ T if the objective of the interest is to find a deductive proof
of the interest-sequent; NIL otherwise.

¥ cancelled-interest Ñ T if a deductive proof has been found for the interest-
sequent; NIL otherwise.

¥ interest-queue-node Ñ if the interest is currently on the inference-queue, this lists
the queue-node enqueing it.

¥ interest-i-list Ñ the i-list whose i-list-formula is the sequent-formula of the
interest-sequent.

¥ maximum-degree-of-interest Ñ for interests having right links, this is the min-
imum of the degrees of interest of the nodes to which the given interest is linked
by right-links; for other interests this is the degree-of-interest of the node.

¥ interest-defeatees Ñ if the node is of interest as a defeater for some inference-
graph nodes, this lists those nodes.

¥ generated-suppositions Ñ the list of inference-nodes having the interest as a
generating-interest.

¥ generating-nodes Ñ the list of inference-nodes encoding suppositions that give
rise directly to the interest.

¥ interest-priority Ñ the interest-priority used in ordering the inference-queue.
¥ discharge-condition Ñ a condition that an inference-node must satisfy to dis-

charge the interest.
¥ cancelling-node Ñ the inference-node (if any) that discharges the interest result-

ing in its cancellation.
¥ interest-supposition-nodes Ñ a list of inference-nodes
¥ generated-interest-schemes Ñ the list of interest-schemes having this interest as

their target-interest.
¥ generating-defeat-nodes Ñ the list of inference-nodes for which this is an interest

in a defeater.
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¥ cancelled-left-links Ñ the list of cancelled interest-links for which this is the



resultant-interest.

Some nodes of the interest-graph  will be termini.  They represent the starting points for
backwards reasoning rather than being for something else.  These will be either queries
from ultimate-epistemic-interests or interests in defeaters for defeasible inference steps per-
formed by the reasoner.  Terminal nodes are distinguished by having empty lists of
right-links.

As in the case of inference-nodes, interests will be stored in the list interests, which is a
list of i-lists.  An i-list is a data structure encoding the following information:

¥ i-list-formula.
¥ corresponding-c-list Ñ the c-list, if any, whose c-list-formula is the same as the

i-list-formula.
¥ i-list-interests Ñ the list of interests in sequents having the i-list-formula as their

sequent-formula.
¥ i-list-queries Ñ the list of queries in ultimate-epistemic-interests having the i-list-

formula as their query-formula.

Reasons
Forwards-reasons will be data-structures encoding the following information:
¥ reason-name.
¥ reason-function Ñ explained below.
¥ forwards-premises Ñ a list of forwards-premises.
¥ backwards-premises Ñ a list of backwards-premises.
¥ backwards-premises-function Ñ a function which, when applied to a binding of

the reason-variables, produces the list of formulas determined by applying the
binding to the backwards-premises.

¥ reason-conclusions Ñ a list of formulas.
¥ conclusion-function Ñ an optional function that computes the conclusions.
¥ reason-variables Ñ the set of variables to be used in finding instances of the

premises by pattern-matching.
¥ defeasible-rule Ñ T if the reason is a defeasible reason, NIL otherwise.
¥ reason-strength Ñ a real number between 0 and 1, or an expression containing

some of the reason-variables and evaluating to a number.
¥ discount-factor Ñ a real number between 0 and 1, used in prioritizing reasoning

involving the use of the forwards-reason,
¥ reason-description Ñ an optional string describing the reason.

  The discount-factor will usually be 1, but by setting it lower we can lower the priority of
reasoning using this reason.  This will be illustrated in chapter four.

Forwards-premises are data-structures encoding the following information:
¥ fp-formula Ñ a formula.
¥ fp-kind Ñ :inference, :percept, or :desire (the default is :inference)
¥ fp-condition Ñ an optional constraint that must be satisfied by an inference-node

for it to instantiate this premise.
¥ fp-variables Ñ the reason-variables occurring in this premise.
¥ fp-binding-function Ñ a two-valued function which, when applied to a formula

that instantiates the premise, returns the list of ordered pairs (an a-list) telling
how the fp-variables are bound to obtain this instance, and also returns the
instantiation of the conclusions-variables (see chapter five).

¥ fp-instantiator Ñ a function which, when applied to a premise and a binding
returns the formula produced by substituting the bindings for the variables in
the premise.

Similarly, backwards-premises are data-structures encoding the following information:
¥ bp-formula
¥ bp-kind
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¥ bp-condition1 Ñ an optional predicate that formulates a constraint that must be



satisfied by an existing interest to which the backwards-reason is being.
¥ bp-condition2 Ñ an optional predicate which should be such as to set the values

of slots so that the resulting interest satisfies bp-condition1.
¥ bp-instantiator

The use of the premise-kind is to check whether the sequent from which a forwards
inference proceeds represents a desire, percept, or the result of an inference.  The contents
of percepts, desires, and inferences are all encoded as sequents, but the inferences that
can be made from them depend upon which kind of item they are.  For example, we
reason quite differently from the desire that x be red, the percept of xÕs being red, and the
conclusion that x is red.

Forwards-reasons are most easily defined using the macro DEF-FORWARDS-REASON,
which has the following form:

(def-forwards-reason symbol
    :forwards-premises list of pretty-formulas optionally interspersed with with expressions of the form

(:kind ...) or (:condition ...)
    :backwards-premises  list of pretty-formulas optionally interspersed with with expressions of the form

(:kind ...) or (:condition1 ...) or (:condition2 ...) or (:condition ...)
    :conclusions  list of formulas
    :conclusions-function lambda expression or function
    :strength number or a lambda-expression evaluating to a number whose single variable is ‘binding’

(default is 1.0).
    :variables list of symbols
    :defeasible? T or NIL (NIL is default)
    :description an optional string (quoted) describing the reason)

For example:

(def-forwards-reason *DISCOUNTED-PERCEPTION*
    :forwards-premises
    "((the probability of p given ((I have a percept with content p) & R)) <= s)"
       (:condition (< s 0.9))
    "(p at time)"
       (:kind :percept)
    "(R at time0)"
       (:condition (projectible R))
    :backwards-premises
    "(time0 < time)"
    :conclusions "(p at time)"
    :variables p time R time0 s
    :strength #'(lambda (binding) (cdr (assoc 's binding)))
    :defeasible? t
    :description "When information is input, it is defeasibly reasonable to believe it.")

In defining reasons, :condition1 and :condition2 are most often used to define a discharge-
condition.  That can be done more simply by using :condition.  Conditions frequently
involve arithmetical relations between the variables.  In formulating conditions, Ô+Õ, Ô-Õ, Ô*Õ,
Ô/Õ, Ô<Õ, Ô<=Õ, and Ô=Õ can be written in either infix form or prefix form.

Reasons are applied by pattern-matching, using the reason-variables as the variables
for the pattern-match.  For example, modus-ponens can be defined as follows:

(def-forwards-reason modus-ponens
:forwards-premises  “P”  “(P -> Q)”
:conclusions  “Q”
:variables  P Q)
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Then given the conclusion (A & B) and ((A & B) -> (C v D)), the reason-variable P can be
bound to Ò(A & B)Ó and Q to Ò(C v D)Ó, with the result that these formulas match the
forwards-premises.  Then the binding is applied to the conclusions to yield Ò(C v D)Ó,
which is then inferred.  In chapter five, when free variables and unification are introduced,
this will become more complicated, but for now we can use simple pattern-matching.
This is done efficiently by constructing a function that compiles the pattern-match at the
time the reason is defined.  Sometimes efficiency can be increased by hand-coding that
function and storing it in the slot reason-function.

Normally, the conclusions of a forwards-inference are constructed by applying the
pattern-match produced by the premises to the conclusions, but sometimes the conclusions
should be some more complex function of that pattern match.  The conclusions-function
provides the machinery for this.  For instance, we might define a somewhat whimsical
reason as follows:

(def-forwards-reason GREEN-SLYME
    :forwards-premises
      "(Patient-has-had-green-slyme-running-out-of-his-nose-for  x  hours)"
      (:condition (numberp x)

(:kind inference))
    :variables   x
    :conclusions-function
      (The-probability-that the-patient-ingested-silly-putty is (* .5 (- 1 (exp (- x)))))
    :strength   .95
    :defeasible? T)

Backwards-reasons will be data-structures encoding the following information:
¥ reason-name.
¥ reason-function.
¥ forwards-premises.
¥ backwards-premises.
¥ reason-conclusions Ñ a list of formulas.
¥ reason-variables Ñ the set of variables to be used in finding instances of the

premises by pattern-matching.
¥ strength Ñ a real number between 0 and 1, or or an expression containing some

of the reason-variables and evaluating to a number.
¥ defeasible-rule Ñ T if the reason is a defeasible reason, NIL otherwise.
¥ reason-condition Ñ a condition that must be satisfied bythe sequent of interest

before the reason is to be deployed.
¥ reason-discharge Ñ for rules like conditionalization that introduce new supposi-

tions, this is the formula supposed.
¥ reason-length Ñ the number of backwards-premises.
¥ discount-factor Ñ a real number between 0 and 1, used in prioritizing reasoning

involving the use of the forwards-reason.
¥ conclusion-variables Ñ the variables occurring in the reason-conclusions.
¥ conclusion-binding-function Ñ a function which, when applied to an interest

having the form of the first member of the reason-conclusions, produces the
binding (an a-list) of the conclusion-variables.

Backwards-reasons are most easily defined using the macro DEF-BACKWARDS-REASON,
which has the following form:

(def-backwards-reason symbol
    :conclusions  list of formulas
    :forwards-premises list of pretty-formulas optionally interspersed with with expressions of the form

(:kind ...) or (:condition ...)
    :backwards-premises  list of pretty-formulas optionally interspersed with with expressions of the form
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    :conclusions-function lambda expression or function
    :condition  this is a predicate applied to the binding produced by thetarget sequent
    :strength number or a lambda-expression evaluating to a number whose single variable is ‘binding’

(default is 1.0).
    :variables list of symbols
    :defeasible? T or NIL (NIL is default)
    :description an optional string (quoted) describing the reason)

For example:

(def-backwards-reason *CAUSAL-IMPLICATION*
    :conclusions  "(Q at time*)"
    :forwards-premises
    "(A when P is causally sufficient for Q after an interval interval)"
       (:condition (every #'temporally-projectible (conjuncts Q)))
    "(A at time)"
    :backwards-premises
    "(P at time)"
    "((time + interval) < time*)"
    :variables  A P Q interval time time*
    :defeasible?  T)

The macros def-forwards-undercutter and def-backwards-undercutter facilitate the def-
inition of undercutting defeaters.  These work just like def-forwards-reason and def-
backwards-reason, except that rather than listing the conclusions, we list the defeated
reason.  For example:

(def-backwards-undercutter *DEFEAT-FOR-CAUSAL-IMPLICATION*
    :defeatee *causal-implication*
    :backwards-premises
    "((Q at time1) @ (Q at time*))"
   "((time + interval) < time1)"
    "(time1 < time*)"
    :variables time time1 time* interval A P Q)

The inference-queue
The inference-queue will enqueue inference-nodes encoding input states (which will be

percepts and primitive desires), new inference-nodes encoding the results of inferences,
queries from ultimate-epistemic-interests, and new interests (interest-graph nodes).  Accord-
ingly, I will take the inference-queue to be an ordered list of data-structures called inference-
queue-nodes, each encoding the following information:

¥ the item enqued Ñ an inference-node, a query, or an interest;
¥ the item-kind Ñ :conclusion, :interest, or :query;
¥ item-complexity Ñ discussed below;
¥ discounted-strength Ñdiscussed below;
¥ the degree-of-preference Ñ discussed below.

The ordering of the nodes of the inference-queue will be done by the relation –x is
i-preferred to y≠.  Specifying this relation is part of the process of programming OSCAR.  A
simple preference relation that is used as the default appeals to two properties of the
enqued item.  The first will be referred to as the Òdiscounted-strengthÓ of the item, and
will be measured by a real number between 0 and 1.  The discounted-strength of a desire
is simply its desire-strength.  The discounted-strength of a percept is its clarity.  The
clarity of a percept will, for now, be treated as a primitive property whose value is
specified by the perceptual input systems to which OSCAR is attached.  This may be
treated in a more sophisticated way later.  The discounted-strength of an inference-node
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of the inference-node, but there are two complications.  First, inference-nodes recording
suppositions are generated by interests.  For example, interest in a conditional will lead
the reasoner to suppose the antecedent with the objective of inferring the consequent, and
the supposition of the antecedent is recorded as an inference-graph node and an inference-
node.  The degree-of-jusitification of this inference-node will automatically be 1, but the
priority assigned to reasoning from it should be a function of the discounted-strength of
the generating interest.  Accordingly, when an inference-node is generated by an interest,
its discounted-strength will be taken to be the discounted-strength of the interest rather
than the undefeated-degree-of-support.  Second, it turns out to be desirable to give inferences
in accordance with some inference rules (either backwards or forwards) low priority.
This is accomplished by attaching a discount-factor (a real number between 0 and 1) to the
rule, and using that to lower the degree-of-preference.  Accordingly, the discounted-strength
of an inference-node of type ÒinferenceÓ that is not generated by an interest will, in
general, be the maximum (over its node-arguments) of the product of the discount-factor
of the support-link-rule of the last support-link in the argument and the strength of the
argument.  (This is computed recursively by COMPUTE-UNDEFEATED-DEGREES-OF-
SUPPORT, without computing the list of node-arguments.)  The discounted-strength of
an interest will be its interest-priority, which will be discussed below.

The second property to which the default preference relation appeals is ÒcomplexityÓ.
This is a measure of syntactic complexity, and the idea behind the preference ordering is
that reasoning with simpler formulas is given precedence over reasoning with complex
formulas.  Accordingly, we define:

Where x is an enqued item, strength is the discounted-strength of x, and complexity is
the complexity of the sequent expressing the content of x, the degree-of-preference of x is
strength/complexity.

The default preference relation is then:

x is i-preferred to y iff the degree-of-preference of x is greater than the degree-of-
preference of y.

With one qualification, the default complexity measure simply counts the number of
symbol tokens (not counting parentheses) occuring in the sequent expressing the content
of the enqued item.  This has the effect of giving precedence to reasoning with short
formulas.  The qualification is that non-reductio-suppositions (explained in chapter four)
are not counted in computing complexity.  (In first-order reasoning, they will only be
ignored if they contain no free variables or skolem-functions.)  The only justification I
have to offer for this complexity measure is that it seems to work reasonably well, and it
is a rough reflection of the way human beings prioritize their reasoning.

The discounted-strength of an interest is its interest-priority.  To understand this
concept, it must first be realized that degrees of interest play two roles.  They determine
how justified an answer must be for it to be an acceptable answer, and they prioritize
reasoning.  Initially, the priority of backwards reasoning is determined directly by the
degree-of-interest.  If something is of interest ultimately for answering a certain query,
and an answer is obtained for that query, this lowers the priority of backwards reasoning
from that interest, but does not lower the degree-of-interest itself (in its role of determining
how good answers must be).  So the interest-priority of an interest should be some function
of (1) the degree-of-interest, (2) the discount-factor of the backwards reason used in its
derivation, (3) whether the interest is ultimately aimed at answering a query none of
whose query-answers are believed, (4) whether the interest derives from a defeated member
of the interest-graph, and (5) whether the node-sequent is already supported by an inference-
node whose undefeated-degree-of-support is greater than or equal to the degree-of-interest.
The interest-priority must also be a number between 0 and 1.  Supplying the exact definition
of interest-priority will be part of the process of programming OSCAR, but a default
definition is built into OSCAR.  This definition is the following:
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¥ The interest-priority of a query from permanent-ultimate-epistemic-interests is its



degree-of-interest.
¥ The interest-priority of any other query is α0 if it has already been answered, and

its degree-of-interest otherwise.
¥ The interest-priority of an interest-graph node having an empty set of right-links

is α 0 (this represents interest in a defeater for a defeasible inference);
¥ The interest-priority of any other interest-graph  node node is computed as fol-

lows.  Let L be the set of its undefeated right-links having resultant-interests with
maximum-degrees-of-interest greater than the maximum undefeated-degree-of-
support at which they have been discharged.  If L is empty, the interest-priority
of node is α 0; otherwise it is the maximum over L of the set of products of the
discount-factor of the link-rule and the interest-priority of the resultant-interest.

α0 serves as a base-level of interest-priority used for reasoning from defeated nodes and
used for the search for defeaters for inference-graph nodes.  As long as α 0 > 0, the reasoner
will ÒeventuallyÓ get around to reasoning prioritized in this way, provided new environ-
mental input does not continually delay it by inserting new items in front of it in the
inference-queue.  The higher the value of α 0, the more effort the reasoner is apt to expend
on these matters.

4.  Epistemic Cognition

Epistemic cognition is performed by THINK:

THINK
If the inference-queue is nonempty, let Q be the first member of the inference-queue:
¥ Remove Q from the inference-queue.
¥ Let node be the item enqued by Q if it is an inference-node:

¥ insert node into the list of processed-conclusions.
¥ REASON-FORWARDS-FROM node

¥ Let query be the item enqued by Q if it is a query, and let priority be its interest-
priority:
¥ REASON-BACKWARDS-FROM-QUERY query priority.

¥ Let interest be the item enqued by Q if it is an interest-graph node, and let priority
be its interest-priority:
¥ REASON-BACKWARDS-FROM interest priority.
¥ FORM-EPISTEMIC-DESIRES-FOR interest.

If the list new-links is nonempty, UPDATE-BELIEFS and set new-links to ∅ .

Desires are enqued as inference-graph nodes, and as such are used for forwards reasoning
rather than backwards reasoning.  This might seem surprising, but recall that desires
function as forwards directed prima facie reasons for concluding that the desired state is
a suitable goal.

4.1  Reasoning Backwards
Reasoning backwards  begins by reasoning backwards from queries contained in ultimate-

epistemic-interests.  Reasoning backwards from a query consists of constructing an interest
to record interest in the query-formula and then reasoning backwards from it:

REASON-BACKWARDS-FROM-QUERY  query priority
Construct an interest N encoding interest in the query-formula, with a right-link L to
query with the degree-of-interest degree equal to the degree-of-interest in query.  Then:
¥ REASON-BACKWARDS-FROM N priority.
¥ FORM-EPISTEMIC-DESIRES-FOR N.
¥ If N is validated to undefeated-degree-of-support degree by some inference-node

C, place C in the list of supporting-nodes for L, and DISCHARGE-LINK L degree
degree.
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Backwards reasoning builds the interest-graph.  It begins with interests recording interest
in defeaters and recording queries from ultimate-epistemic-interests.  Then it applies back-
wards reasons to generate interest-links.  The left terminus of an interest-link will be a
single interest which answers the query or a list of interests from which the resultant
interest can be inferred (together with the forwards-premises) in accordance with some
backwards-reason.  Then the process will be repeated, generating new interest-links and
new interests.

The structure of backwards reasoning is diagrammed in figure 14.  Beginning with
interest in a sequent S, backwards reasoning will first find all backwards reasons that
would allow the inference of S with a maximal-degree-of-support greater than or equal to
the degree-of-interest.  It uses these to build interest-schemes, which result from partially
instantiating the premises of the reason so that the conclusion is identical with the interest-
formula of the target-interest.  Interest-schemes are recorded in the list interest-schemes.
For each such interest-scheme, the reasoner searches for all combinations of inference-nodes
that comprise instances of the forwards-basis (the partially instantiated forwards premises),
and uses them to generate fully instantiated instances of the backwards reason.  This is
the process of Òdischarging an interest-schemeÓ.  The resulting instances are recorded as
interest-links.

The resultant-interest from which the backwards reasoning is proceeding could itself
be the left terminus of several different interest-links.  In that case, the degree-of-interest
for the node is the minimum of the degrees-of-interest in the resultant-interests of those
links.  This ensures that backwards reasons of use for inferring any of those resultant-interests
will be considered.  On the other hand, the interest-priority will be the maximum of the
interest-priorities of the resultant-interests.  That way, the reasoner assigns appropriate
interest to answering important questions, and if it answers less important ones along the
way, so much the better. When a new left-link is constructed, the reasoner adopts interest
in the first member of the remaining-premises.  If an inference-node is found that validates
the interest to an adequate undefeated-degree-of-support, it is ÒdischargedÓ and the rea-
soner goes on to the next remaining-premise, constructing a new interest-link having that
as the link-interest.  Taking premises one at a time prevents the reasoner from expending
its resources looking for arguments for the later premises if no argument can be found for
the earlier ones.  Once all of the premises are validated to an adequate undefeated-
degree-of-support, then if the resultant-interest is an interest, its node-sequent will be
inferred from the supporting-nodes of the link.  This is handled by MAKE-BACKWARDS-
INFERENCE.  If instead the resultant-interest is a query, DISCHARGE-ULTIMATE-INTEREST
will be applied to it.

Two things can happen when the reasoner adopts interest in the next remaining-premise.
First, there might already be an interest recording interest in that sequent.  In that case,
the left-link is simply attached to it as a new right-link, and the degree-of-interest is
recomputed.  If the interest is still on the inference-queue, its interest-priority must also be
recomputed.  If the interest is no longer on the inference-queue, and the new link lowers
its degree-of-interest, then it must be reinserted into the inference-queue and backwards
reasoning from it reinitiated for those backwards reasons that were too weak to satisfy
the original interest.   Second, there might be no pre-existing interest recording interest in
the sequent.  In that case, we must consider two possibilities.  (1) In most cases, the
reasoner will not yet have found an argument supporting the sequent of interest.  In this
case, a new interest is constructed recording the interest, and it is inserted into the inference-
queue.  But (2), it could happen that the reasoner has already found an argument validating
the sequent of interest (and recorded it in the inference-graph).  If the argument is deductive,
there is no point in proceeding with this interest.  The reasoner should go on to the next
remaining-premise and adopt interest in it.  But if the argument is not deductive, a new
interest should be constructed just as if no argument had yet been found.  The new
inference-node should be placed on the inference-queue, but with low priority.  That way,
if the argument validating the sequent is subsequently defeated, the priority will be
recomputed and backwards reasoning from it will occur in the normal way.  As there is
already an argument validating the sequent of interest, the reasoner will then go on to the
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REASON-BACKWARDS-FROM  interest priority
¥ Let sequent be the interest-sequent of interest, δ its degree-of-interest, and δ* its

last-processed-degree-of-interest.
¥ For each backwards-reason R of strength at least δ but less than δ*, if interest is

still uncancelled and the (first) conclusion of R matches the interest-formula of
interest by pattern-matching using the reason-variables, and binding is the result-
ing assignment of values to the reason-variables, apply MAKE-BACKWARDS-
INFERENCE to R, binding, and interest.

¥ For each auxiliary rule for backwards reasoning R, apply R to S.

MAKE-BACKWARDS-INFERENCE  R binding interest
¥ if R has no forwards-premises, construct an interest-link for inferring sequent

from the backwards-premises, instantiating the premises by applying binding to
them, and apply DISCHARGE-LINK to link δ;

¥ if R has forwards-premises, then construct an interest-scheme for inferring
sequent from the forwards- and backwards-premises collectively, partially instan-
tiating the premises by applying binding to the interst-formulas and for each
complete instantiation of the forwards-premises such that all are validated by
processed-conclusions with maximal-degree-of-support at least δ, and max-degree
is the maximum-degree-of-interest of interest, make an interest link link recording
the instance of the interest-scheme.  Let the discharge-condition of the link-
interest be the same as the fp-condition2 for the premise, and apply DISCHARGE-
LINK link δ.

Discharging a link is done first when the link is constructed and consists of looking for
inference-nodes of adequate strength validating members of the link-interest.  If such a
node is found and the link has remaining-premises, a new interest-link is constructed by
inserting the validating node into the list of supporting-nodes of the discharged link,
deleting the first remaining-premise from the list of remaining-premises and making it
the link-interest.  Then the new link is discharged.  If instead the link has no remaining-
premises, then (1) if the link is an answer-link, the new inference-node is recorded as an
answer to the query that is the resultant-interest of the link, and (2) otherwise, the resultant-
sequent is inferred from the supporting-nodes of the link.

DISCHARGE-LINK  link δ (using priority, if available, to simplify the computation of interest-
priorities):

 ¥ For every inference-node N in the c-list-nodes of the correspondingc-list of the
interest-i-list of the resultant-interest of link, if N satisfies the discharge-condition
(if any) of the resultant-interest and the node-supposition of N is a subset of the
interest-supposition of the resultant-interest
¥ If link is an answer-link, add N to the list of supporting-nodes of link� and add

N to the list of query-answers for the resultant-interest of link.
¥ If link  is not an answer-link and has no remaining-premises, where discharge

is the link-discharge of link and R is the link-rule, let formula be the interest-
formula of the resultant-interest of link, and DRAW-CONCLUSION formula
supporting-nodes R discharge.

¥ If instead link has remaining-premises, construct a new interest-link by
inserting the validating node into the list of supporting-nodes of the dis-
charged link, deleting the first remaining-premise from the list of remaining-
premises and making it the link-interest.  Apply DISCHARGE-LINK to the
new-link and δ.

¥ If N is a deductive-node, CANCEL-INTEREST-IN interest.
¥ If N is not a deductive-node, then for all generated-suppositons of interest

that have no other generating-interests, if N is deductive-in the supposition,
apply CANCEL-NODE to the supposition.
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Cancellation will be discussed below.
Some backwards-reasons will instruct the reasoner to make a new supposition.  For

example, conditionalization instructs the reasoner that if it is interested in a conditional
(PÊ→ Q), it is to suppose P and try to infer Q/{P}.  Supposing P consists of constructing an
inference-graph node for the sequent P/{P}, storing it in conclusions, and inserting it into
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4.2  Reasoning Forwards
Reasoning forwards consists of three operations.  First, new inference-nodes are used

to instantiate forwards-reasons, and inferences made on that basis.  Second, new inference-
nodes are used to instantiate the forwards-premises of interest-schemes, thereby producing
new interest and interest-links for use in backwards reasoning.  These first two kinds of
inference are performed when the inference-node is retrieved from the inference-queue.
Third, new inference-nodes are used to discharge interests that they validate.  This operation
is performed immediately upon producing the new inference-node rather than waiting
until it is retrieved from the inference-queue.  This allows one interest-discharge to lead
immediately to another, and thereby allows the reasoner to rapidly discharge an entire
chain of backwards reasoning and get back to the queries that intiated it, without having
to perform a lot of unrelated reasoning that might be interspersed on the inference-queue.

The forwards reasoning that is performed when an inference-node is retrieved from
the inference-queue is performed by REASON-FORWARDS-FROM.  The forwards reasoning
that is performed immediately upon producing a new inference-node is performed by
DRAW-CONCLUSION.

REASON-FORWARDS-FROM node
¥ DISCHARGE-INTEREST-SCHEMES node .
¥ APPLY-FORWARDS-REASONS node.
¥ If (interests-discharged? node) is NIL, apply DISCHARGE-INTEREST-IN to node and

the corresponding-i-list of the node-c-list of node.
¥ For each auxiliary rule R for forwards reasoning, apply R to node.

Auxiliary rules are included for the sake of generality.  These are rules that are triggered
by adopting new inference-nodes but do not simply make inferences from the new inference-
nodes.  We also allow auxiliary rules for backwards reasoning.

APPLY-FORWARDS-REASONS  node
For each forwards-reason R, if there is a list nodes such that (1) node is in nodes, (2) the
other members of nodes are processed conclusions, (3) the members of nodes satisfy the
applicability-conditions of R, and (4) where B is the list of node-formulas of the mem-
bers of nodes, B matches the forwards-premises of R by pattern-matching, and binding
is the resulting assignment to the reason-variables, then MAKE-FORWARDS-
INFERENCE R binding basis.

MAKE-FORWARDS-INFERENCE  R binding basis
¥ If R has no backwards-premises and P is the result of applying binding to one of

the conclusions of R, DRAW-CONCLUSION P nodes R.
¥ If R has backwards-premises, adopt interest in the result applying binding to the

conclusions of R (but do not reason backwards from the new interests), and for
each such new interest construct a left-link from it to the result of applying
binding to the backwards-premises of R and apply DISCHARGE-LINK to that link.

DRAW-CONCLUSION is the operation that records the result of a forwards inference in
new inference-graph nodes, and performs whatever subsidiary operations we want to
immediately apply to these nodes.  These operations consist of (1) constructing the inference-
node supporting the node-sequent and the c-list for the node-formula, if these do not
already exist, (2) if the inference-node is newly-constructed, determining and recording
what queries, if any, are answered by it, (3) deleting logically-weaker subsumed nodes
(see below) from the databases used by the reasoner, (4) recomputing defeat-statuses and
inference-queue priorities, and (5) if the inference-node is either newly-constructed or its
maximal-degree-of-support increases as a result of adding the new nodes to its node-list,
it is used to discharge interests that it is now but was not previously strong enough to
satisfy.
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DRAW-CONCLUSION P B R discharge (optional-argument: interest)
If no member of B is cancelled, let sup be the union of the node-suppositions of the
members of B, less discharge, and let S be the sequent 〈sup,P〉 .  If S has not been validat-
ed deductively:
¥ If R is not defeasible, let NDA be the set of unions of the crossproducts of the sets

of nearest-defeasible-ancestors of members of B*, and otherwise let NDA be NIL.
¥ If either R is defeasible or not SUBSUMED S NDA :

¥ If there is an inference-node of kind :inference supporting S, let node be that
inference-node.

¥ Otherwise, construct a new inference-node node supporting S.
¥ If node is a deductive-node, and interest is not NIL, add interest to the list of

enabling-interests for node.
¥ Build a support-link link recording the inference of node from B in accordance

with R, and recompute the lists of node-ancestors and nearest-defeasible-
ancestors for the inference-descendants.

¥ If the preceding step does produce new arguments for node:
¥ ADOPT-INTEREST-IN-DEFEATERS-FOR link.
¥ Record link as a support-link for node.
¥ If node is newly constructed, add it to the inference-graph and store it in

the list of conclusions
¥ If R is defeasible, add {node} to the list of nearest-defeasible-ancestors of

node; otherwise append NDA to the list of nearest-defeasible-ancestors of
node.

¥ CANCEL-SUBSUMED-LINKS link.
¥ If node is either newly-constructed, or its maximal-degree-of-support has

increased as a result of adding this support-link, let old-degree be the old
maximal-degree of support for node:
¥ Let i-list be the corresponding i-list of the conclusion-c-list of node.

¥ If node is either newly-constructed, or its maximal-degree-of-support
has increased as a result of adding this support-link, DISCHARGE-
INTEREST-IN-DEFEATERS node i-list old-degree

¥ Add ink  to the list new-links.
¥ If node already existed but this inference increases the maximal-degree-

of-support of node, ADJUST-SUPPORT-FOR-CONSEQUENCES node
old-degree

¥ If node is either newly-constructed, or its maximal-degree-of-support
has increased as a result of adding this support-link, DISCHARGE-
INTEREST-IN node i-list old-degree interest

Let us say that one support-link L1 subsumes a secondL2 when they are so-related that
(1) no conclusion can be inferred from the support-link-target of L2 that cannot be inferred
from the support-link-target of L1 and (2) anything defeating L1 would also defeat L2 .  In
such a case, L2 is redundant and that inference should not be made.  If it has already been
made when L1 is constructed, then it should be cancelled.  To encode these subsumption
rules, we need a precise characterization of (sufficient) conditions for subsumption.  OSCAR
employs three such conditions:

(a) If L1 and L2 are non-defeasible support-links for the same node, then L1 subsumes
L2 if every set X in the list of nearest-defeasible-link-ancestors for L2  contains as a
subset some set Y in the list of nearest-defeasible-link-ancestors for L1.

(b) Let N1 be the support-link-target of L1  and N2 the support-link-target for L2.  If N1

and N2 have the same node-formula, and the node-supposition of N1 is a subset
of the node-supposition of N2, and either
(i) L2 records a defeasible inference, L1  records an infrence in accordance with

the same inference-rule, the union of the nearest-defeasible-ancestors of the
basis of L1  is the same as the union of the nearest-defeasible-ancestors of the
basis of L2 (so that they will be defeated by the same defeaters), and the the
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binding employed in inferring L2 equals the binding employed in L1  (so the



defeaters are the same except possibly for L2 having defeaters containing
additional formulas in their suppositions); or

(ii) L2 records a non-defeasible inference and every set X in the list of nearest-
defeasible-link-ancestors for L2  contains as a subset some set Y in the list of
nearest-defeasible-link-ancestors for L1,

then L1 subsumes L2.

Blocking or removing subsumed support-links is accomplished by the Ònot SUBSUMEDÓ
restriction in DRAW-CONCLUSION, which precludes creating new support-links violating
this restriction, and the operation CANCEL-SUBSUMED-LINKS, which eliminates pre-existing
support-links violating lthis restriction.

In searching for defeaters for a defeasible inference, we want to (1) be alert for defeaters
for any argument (regardless of strength) in which the inference is used, and (2) minimize
the priority of the search.  This can be accomplished by taking the degree-of-interest in
defeaters to be 0 and the interest-priority to be α0:

ADOPT-INTEREST-IN-DEFEATERS-FOR S B R new-nodes
¥ If R is a defeasible reason, insert an interest in the rebutting defeater and the

undercutting defeater for the inference from B to S into the inference-queue,
taking the degree-of-interest to be 0 and the interest-priority to be α 0.

¥ Find any existing defeaters for the members of new-nodes, and record them in the
lists of node-defeaters and node-defeatees for the respective nodes.

¥ If S is inferred via a Q&I module, adopt interest in defeaters for that inference.

When a new support-link is added to an existing node, that can increase its maximal-
degree-of-support, and those for it node-consequences, and the node-consequences of the
node-consequences, and so on recursively.  These changes are computed by ADJUST-
SUPPORT-FOR-CONSEQUENCES.  Furthermore, each time this increases the maximal-
degree-of-support for a node, DISCHARGE-INTEREST-IN-DEFEATERS, and DISCHARGE-
INTEREST-IN, must be run for the new maximal-degree-of-support to catch any discharges
that could not be performed for the previous maximal-degree-of-support but can now be
performed.  If the node is a processed-conclusion, DISCHARGE-INTEREST-SCHEMES must
also be run.  (This difference reflects the fact that DISCHARGE-INTEREST-IN is applied to
inference-nodes immediately upon creation, while DISCHARGE-INTEREST-SCHEMES is
only applied to inference-nodes when they are retrieved from the inference-queue).

Cancellation rules are very important in OSCAR.  These prevent OSCAR from per-
forming reasoning that is no longer of use.  DISCHARGE-INTEREST-IN and DISCHARGE-LINK
both apply two cancellation rules.  First, if an interest is established deductively, then
there is no reason to seek further arguments for it, so it is removed from the list of
interests.  Second, let us say that one node is deductive-in a second node if the first node is
a node-ancestor of the second, and the first node and every inference-ancestor of it having
the second node as an inference-ancestor is obtained by making a deductive inference.  In
other words, the first node is deductive-in the second iff the second is used in reasoning
to the first, and all such reasoning is deductive.  If an interest generates a supposition,
and the interest is subsequently obtained by an argument that is deductive-in that sup-
position, then that supposition has served its purpose and there is no reason to pursue
further reasoning from it.  This is accomplished by cancelling the node recording the
supposition.  (The details of cancelling a node will be discussed below).

In the following new? is T iff node is newly-constructed, and if node is not newly-
constructed then old-degree is its previous maximal-degree-of-support, and i-list  is the
corresponding-i-list of the node-c-list for node:

DISCHARGE-INTEREST-IN node i-list old-degree new? (optional-argument: interest)
If either new? is T or the maximal-degree-of-support of node is greater than old-degree:
¥ Let δ be the maximal-degree-of-support of node.
¥ For each interest N in the list of i-list-interests of i-list, if N is interest, or (1) either
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new? is T, or δ is greater than old-degree, (2) the degree-of-interest of N is less than



or equal to δ, (3) node satisfies the discharge-condition of N, and (4) node validates
the node-sequent of N, then:
¥ For all right-links link of N, if the degree of interest in the resultant-interest of

link is less than or equal to δ, and either new? is T or the link-strength of link is
greater than old-degree:
¥ If the link-rule of link is ÒanswerÓ (i.e., it is a link to a query), add node to

the list of supporting-nodes of link and DISCHARGE-LINK link.
¥ Otherwise, DISCHARGE-LINK link.

¥ If node was established deductively, CANCEL-INTEREST-IN N node.
¥ Otherwise, if the node-supposition of conclusion is a subset of the interest-

supposition of interest, then for any generated-suppositions sup of interest
which are such that node is deductive in sup, CANCEL-NODE sup node.

This pseudocode implements an important observation.  When the reasoner makes an
inference from a link, the resulting conclusion is guaranteed to discharge the resultant-
interest of the link.  In that case, the resultant-interest is passed to DRAW-CONCLUSION as
a new argument, and that argument is in turn passed to DISCHARGE-INTEREST-IN.  The
latter can then assume that the conclusion is appropriately related to that particular
interest to discharge it.

DISCHARGE-INTEREST-IN-DEFEATERS  node i-list old-degree
¥ Let δ be the maximal-degree-of-support of node.
¥ For each interest N in the list of i-list-interests of i-list, if the degree-of-interest of

N is less than or equal to δ, the maximal-degree-of-interest for N is greater than
old-degree, and node validates the node-sequent of N, then:
¥ For each interest-defeatee L of N, add node to the list of node-defeaters of L

and add L to the list of node-defeatees of node.

CANCEL-INTEREST-IN N
¥ Remove N from its i-list, and if this empties the list of i-list-interests, remove the

i-list from the list of interests.
¥ Set the value of the slot cancelled-interest for N to T.
¥ If node records a generated-suppositions of N, CANCEL-NODE node.
¥ If N is on the inference-queue, delete it from the inference-queue.
¥ For each interest-scheme S whose instance-consequent is the node-sequent of N,

delete S from interest-schemes.
¥ For all left-links L for N, delete L from the interest-graph, and for each link-interest

M of L, remove L from the list of right-links of M.
¥ For each of those link-interests M, if no right-links remain, CANCEL-INTEREST-IN

M.

CANCEL-NODE  node
¥ Set the value of the slot cancelled-node for node to T.
¥ If N is a generated-interest of node that are not also generated in some other way

(Òunanchored interestsÓ), CANCEL-INTEREST-IN N .
¥ If N is a generated-interest of node, remove node from the list of generating-nodes

of N.
¥ If N is a generating-interest of node, remove node from the list of generated-

suppositions of N.
¥ Remove node from the list of c-list-nodes of its c-list, and if this empties the list of

c-list-nodes, remove the c-list from conclusions and set the corresponding-c-list
for the corresponding-i-list to NIL.

¥ Remove node from the list of c-list-processed-nodes of its node-c-list.
¥ If node* is a node-consequence of node, CANCEL-NODE node* protected-node.
¥ If node is still on the inference-queue, remove it.
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¥ Let S be the node-sequent of node and let δ be its maximal-degree-of-support.
¥ For each interest-scheme, if the degree of interest of the target-interest is ≥

old-degree and S is an instance of one of the remaining-premises, and that instanti-
ation can be extended to an instantiation of all the remaining-premises in such a
way that they are all validated with maximal-degree-of-support greater than
old-degree, construct an interest-link for inferring the interest-sequent of the
target-interest from the backwards-premises, instantiating the premises in
accordance with the instantiation of the forwards-premises, and apply
DISCHARGE-LINK to link.

Recall that UPDATE-BELIEFS is as follows:

UPDATE-BELIEFS
¥ UPDATE-DEFEAT-STATUSES, letting altered-nodes be the inference-nodes that are

inference/defeat-descendants of the members of new-links.
¥ COMPUTE-UNDEFEATED-DEGREES-OF-SUPPORT, letting new-beliefs be the list of

nodes whose undefeated-degrees-of-support (i.e., defeat-statuses) increase as a
result of this computation, and new-retractions be the list of nodes whose
undefeated-degrees-of-support decrease as a result of this computation.

¥ COMPUTE-INTEREST-GRAPH-DEFEAT-STATUSES using new-beliefs and new-
retractions, letting altered-interests be the interest-graph nodes whose defeat-
statuses change.

¥ For each support-link in new-links, if its support-link-target has no support-link
not in new-links, insert the support-link-target into the inference-queue.

¥ For each member S of new-beliefs, APPLY-OPTATIVE-DISPOSITIONS-TO S and
APPLY-Q&I-MODULES-TO S.

¥ DISCHARGE-ULTIMATE-EPISTEMIC-INTERESTS new-beliefs new-retractions, letting
altered-queries be the list of queries whose query-answered-flags change value as
a result.

¥ RECOMPUTE-PRIORITIES using new-beliefs, new-retractions, altered-interests and
altered-queries, and reorder the inference-queue.

Optative dispositions are implemented as functions, and applying them just consists
of applying the functions to S.

Applying Q&I modules is more complex.  They function in much the same way as
prima facie reasons, but there are some important differences.  First, they are applied only
to beliefs (nodes having nonzero undefeated-degrees-of-support), not to defeated nodes.
Second, at least in human beings, it seems that the basis for a node drawn with a Q&I
module is not recorded along with the node.  As in the discussion in chapter two of
Cognitive Carpentry  of Q&I modules for induction, that is often part of the point of Q&I
modules.  It is unclear to me whether this is an essential feature of Q&I modules.  Perhaps
there could be different kinds.  But for current purposes, I will assume that all Q&I
modules work this way.  So when a node is drawn by applying a Q&I module to a new
belief, it will be recorded in an inference-graph node having an empty list of support-links,
and the node-justification will be recorded as ÒQ&IÓ.  The reasoner should adopt interest
in defeaters just as in the case of prima facie reasons, but there is again a complication.
As the node-basis is empty, the undercutting defeater cannot be constructed as a formula
of the form –basis ⊗  node≠.  Instead we must simply stipulate that undercutting defeaters
are of the form

P is believed on the basis of a Q&I module under circumstances of type C, and the
probability of P being true given that it is believed on the basis of a Q&I module
under circumstances of type C is insufficiently high for the belief to be justified.

where C is projectible (see chapter two of Cognitive Carpentry).  With this understanding,
we have:
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APPLY-Q&I-MODULES-TO  node
Apply each Q&I module to node to construct inferrable sequents S, and then DRAW-
CONCLUSION S ∅  ÒQ&IÓ.

DISCHARGE-ULTIMATE-EPISTEMIC-INTERESTS  new-beliefs new-retractions
¥ For each node C in new-beliefs  and each query Q in ultimate-epistemic-interests, if C

is in the list of query-answers for Q and the undefeated-degree-of-support of C is
now greater than or equal to the degree-of-interest of query but was not previous-
ly:
¥ Perform the positive-query-instruction of Q on C.
¥ Set the query-answered-flag for Q to T.

¥ For each node C in new-retractions and query Q in ultimate-epistemic-interests, if C
is in the list of query-answers for Q and the undefeated-degree-of-support of C
was greater than or equal to the degree-of-interest of query but is no longer:
¥ Perform the negative-query-instruction of Q on C.
¥ If no members of the list of query-answers for Q are believed, set the query-

answered-flag for Q to NIL.

RECOMPUTE-PRIORITIES new-beliefs new-retractions altered-interests altered-queries
Let affected-nodes and affected-interests be all the inference-nodes and interests whose
discounted-node-strengths and interest-priorities are affected by changing the
undefeated-degrees-of-support of the new-beliefs and new-retractions, the interest-
priorities of altered-interests, and the answered-status of altered-queries.  If any members
of affected-nodes and affected-interests are still on the inference-queue, recompute their
degrees of preference and reorder the inference-queue.

5.  Initiating Action

In OSCARÕs ÒdoxasticÓ architecture for practical reasoning, action initiation begins
with a permanent-ultimate-epistemic-interest in finding executable plan-nodes.  When
OSCARÕs reasoning produces a belief that a certain node is executable and has no subsidiary-
plan, the positive-query-instruction for the query initiating the search is executed.  That
query-instruction inserts a pair 〈A,δ〉 into the list of executable-operations.  A is the term
designating the operation, taken from the formula expressing the belief that the plan-node
is executable. This term will have the form of a list whose first member is an operation
type and the remaining members are parameters determining the specific character of the
operation to be executed.  For example, the operation might be of the type move-your-
index-finger, and the parameters would specify a direction and distance.  δ is a real number
encoding the strength of the desire to perform the operation.  A is assumed to be a basic
action and it is executed by executing built-in subroutines.  INITIATE-ACTIONS then operates
on the list executable-acts.  It chooses a maximally desired act, and tries to perform it:

INITIATE-ACTIONS
Let 〈A,δ〉 be the first member of executable-operations such that δ is greater than or
equal to any γ such that for some b, 〈B,γ〉 is a member of executable-operations:
¥ Delete 〈A,δ〉 from the list of executable-acts.
¥ Try to perform the operation designated by A.
¥ Query epistemic cognition about whether A was successfully executed.  Let the

strength of the query be δ, the query-formula be –A was not executed when the
agent tried to execute it≠, the positive-query-instruction be to reinsert 〈A,δ〉 into
the list of executable-operations, and the negative--query-instruction be to delete
〈A,δ〉 from the list of executable-operations.

Trying to perform an executable act A relative to the null plan consists of performing
some built-in routines that activate extensors.  This will be implemented using a list
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act-executors consisting of pairs 〈act-type,routine〉 .  TRY-TO-PERFORM searches act-executors



for a pair 〈act-type,routine〉  such that act-type  matches the first member of A, and then it
applies the function routine to the remaining members of A.

It is compatible with this architecture that pairs 〈A,δ〉 are inserted into the list of
executable-operations in other ways as well.  In particular, an agent may have built-in or
conditioned reflexes that accomplish the same thing more quickly than planning in special
cases.

Until OSCAR is supplied with reasoning schemes for reasoning about act executability
and performance, these functions will not be called.  This topic will be addressed in a
later chapter.
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