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Abstract 
 

Probability plays an essential role in many branches of AI, where it is typically assumed that 
we have a complete probability distribution when addressing a problem. But this is 
unrealistic for problems of real -world complexity. Statistical investigation gives us 
knowledge of some probabilities, but we generally want to know many others that are not 
directly revealed by our data. For instance, we may know prob( P/ Q) (the probability of P 
given Q) and prob(P/ R), but what we really want is prob( P/ Q&R), and we may not have the 
data required to assess that directly. The probability calculus is of no help here. Given 
prob(P/ Q) and prob(P/ R), it is consistent with the probability calculus for prob( P/ Q&R) to 
have any value between 0 and 1. Is there any way to make a reasonable estimate of the 
value of prob(P/ Q&R)? 
 A related problem occurs when probability practitioners adopt undefended assumptions 
of statistical independence simply on the basis of not seeing any connection between two 
propositions. This is common practice, but its justificat ion has eluded probability theorists, 
and researchers are typically apologetic about making such assumptions. Is there any way to 
defend the practice? 
 This paper shows that on a certain conception of probability Ñ  nomic probability Ñ  
there are principles of Òprobable probabilitiesÓ that license inferences of the above sort. 
These are principles telling us that although certain inferences from probabilities to 
probabilities are not deductively valid, nevertheless the second-order probability of their 
yieldi ng correct results is 1. This makes it defeasibly reasonable to make the inferences. Thus 
I argue that it is defeasibly reasonable to assume statistical independence when we have no 
information to the contrary. And I show that there is a function Y( r,s: a) such that if 
prob(P/ Q) = r, prob(P/ R) = s, and prob(P/ U) = a (where U is our background knowledge) 
then it is defeasibly reasonable to expect that prob(P/ Q&R) = Y(r,s: a). Numerous other 
defeasible inferences are licensed by similar principles of probable probabilities. This has the 
potential to greatly enhance the usefulness of probabilities in practical application.  

1. Introduction  

 AI aims at multiple goals, and probability plays an essential role in most of them. One of the 
ultimate aspirations of AI is the construction of agents of human-level intelligence, capable of 
operating in environments of real -world complexity (in short, Ògenerally intelligent agentsÓ, or 
GIAs). For many years this problem was largely set aside as being too hard for existing AI 
technology, although there has been a recent resurgence of interest in GIAs. A more modest goal 
of AI is the construction of applications that can provide intelligent assistance to human agents. 
Either goal frequently requires AI systems to use and make inferences about probabilities, and as 
we will see, both goals encounter similar problems in their use of probabilities.  
 GIAs are faced with environments about which they have only limited knowledge. They must 
be able to expand their knowledge base, and use that knowledge to guide their activity. Just like 
human beings, they will have to be able to discover new regularities in the world, but these will not 
generally be exceptionless regularities. Much of that knowledge will be probabilistic. Their 
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reasoning about how to act must then be based on this probabilistic knowledge.  
 On the other hand, at least some kinds of AI assistants may not be required to discover new 
generalizations. Perhaps the human operators can be relied upon to provide the requisite general 
knowledge of the world, and then the AI assistants will reason from there. However, for humans 
too, most of our general knowledge of the world is probabilistic. We know that if there are certain 
kinds of clouds, it will probably rain, if we turn the key in the ignition of our car, it will probably 
start, and so forth. Very little of our general knowledge is of exceptionless laws of nature.  
 In their reasoning about probabilities, both GIAs and AI -assisted humans will face a general 
epistemological problem  that have not been adequately addressed in the AI literature. AI 
researchers often assume that when a problem is addressed by either a GIA or an AI-assisted 
human, they will come to the problem equipped with knowledge of a complete probability 
distributio n. The first problem for this assumption is that in a sufficiently complex environment it 
would be impossible to store a complete probability distribution in an AI system. In general, given 
n simple propositions, it will take 2 n logically independent proba bilities to specify a complete 
probability distribution. For a rather small number of simple propositions, this is a completely 
intractable number of logically independent probabilities. For example, given just 300 simple 
propositions, a grossly inadequate number for describing many real -life problems, there will be 2 300 
logically independent probabilities. 2 300 is approximately equal to 1090. To illustrate what an 
immense number this is, recent estimates of the number of elementary particles in the universe put 
it at 1080 Ð 1085. Thus to know the probabilities of all the constituents of a complete probability 
distribution, we would have to know 5 Ð 10 orders of magnitude more logically independent 
probabilities than the number of elementary particles in the  universe. 
 An obvious problem is that if an AI system had to store all of these probabilities explicitly, it 
would have to have more memory than there are elementary particles in the universe. Sometimes 
this problem can be alleviated by assuming that most of the propositions under consideration are 
statistically independent of each other. That enables us to store the probabilities in a Bayesian net, 
which only requires us to explicitly store probabilities where independence fails. It can reasonably 
be oubted that there will always be enough statistical independence for this problem to be solved 
using Bayesian nets. But let us set that aside and focus on the epistemological problem. To use 
Bayesian nets in this way, we have to know what propositions are statistically independent of each 
other. So the human agent, or the GIA, would still have to know the values of all the 2 n logically 
independent probabilities required for specifying a complete probability distribution. In other 
words, the use of Bayesian nets may alleviate the storage problem, but not the epistemological 
problem of knowing the values of the probabilities required for constructing a Bayesian net.  
 In applying probabilities to real -world problems, researchers typically fill in many of the gaps i n 
their knowledge by simply assuming statistical independence when they have no information to 
the contrary. This is strategy is often employed in the construction of Bayesian nets, but such 
assumptions are also made more generally. When they see no apparent connection between two 
kinds of events A and B, researchers assume that the probability of A occurring is independent of 
whether B occurs, i.e., prob(A&B) = prob(A)!prob(B). Such assumptions are ÒdefeasibleÓ, in the 
sense that they may be reasonable assumptions given what the researcher knows initially, but 
further knowledge could, at least in principle, make it clear that A and B are not really statistically 
independent.  
 Defeasible assumptions of statistical independence can go a long way towards filling the gaps in 
our knowledge of probability distributions. However, deciding which independence assumptions 
to make has usually been based on nothing but untutored intuition. AI researchers have lacked 
formal tools for choosing independence assumptions. The reason this is a problem is that different 
sets of seemingly reasonable independence assumptions are often inconsistent with each other. 
How do we decide which set of assumptions to adopt? Untutored intuition often fails us here, and 
the probability calc ulus is of no help. For example, consider a community with building codes that 
specify that only commercial buildings can be painted grey, and also specify that only commercial 
buildings can be multi -storey. Let A = painted grey, B = multi-storey, C = building in this community, 
and D = commercial building in this community. Suppose prob(A/C) = r, prob(B/C) = s, and prob(D/C) 
= d. It is tempting to assume that A and B are independent relative to C, and so prob(A&B/C) = r!s. 
But it is equally tempting to assume that A and B are independent relative to D. However, it is 
impossible for both of these independences to hold. (A&C) and (B&C) are both subproperties of 

(i.e., logically entail) D. It follows by the probability calculus that prob( A/D) = 
r
d

 and prob(B/D) = 
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s
d

. So if A and B are independent relative to D, prob(A&B/D ) = 
  

r !s
d2 . However, it is also true that D 

entails C. It then follows from the probability calculus that prob( A&B/C) = 
 

r !s
d

. Thus if d ! 1, A and 

B cannot be independent relative to both C and D. Once this conflict is discovered, intuition alone 
might leave us wondering which independence assumption we should make.  
 The preceding example illustrates that a blanket assumption of statistical independence for all 
cases in which such assumptions seem initially reasonable will often by inconsistent with the 
probability calculus. The following theorem of the probability calculus is another illustration of this 
phenomenon: 
 

Theorem: If A,B,C each entail U and 

 (a) prob(C/  B & A) = prob(C/ A); 
 (b) prob(C/ B & ~A) = prob(C/ U & ~A); 

(c) prob(C/A) ! prob( C/U); and 
(d) prob(B/A) ! prob( B/U); 
then prob(C/B) ! prob( C/U). 

In other words, if (c) and (d) hold, then the pair of independence assumptions in (a) and (b) are 
inconsistent with the assumption that C is independent of B. The upshot is that defeasible 
assumptions of independence can help alleviate the epistemological problem, but we need a theory 
to guide us in making defeasible assumptions of statistical independence, because our untutored 
intuitions will often lead us into contradiction.  
 Of course, even with such assumptions of independence, there will be a vast number of useful 
probabilities we will not know. Discovering the values of interesting probabilities is a difficult 
epistemic task. In the sciences, researchers get journal publications out of the discovery of new 
probabilistic generalizations, and even in everyday life, we usually have to observe many repeated 
occurrences of events before we can estimate probabilities. This problem can be illustrated by the 
common need for Òjoint probabilitiesÓ. Consider a medical diagnosis problem. Think of Bernard, 
who has symptoms suggesting a particular disease, and tests positive on two unrelated tests for the 
disease. Suppose the probability of a person with those symptoms having the disease is .6. Suppose 
the probability of a person with those symptoms having the disease if they also test positive on the 
first test is .7, and the probability of their having the disease if they have those symptoms and test 
positive on the second test is .75. What is the joint probability of their having the disease if they have 
those symptoms and test positive on both tests? The probability calculus is of no help here. Given 
the preceding assumptions, it is consistent with the probability calculus for the joint proba bility to 
be anything from 0 to 1. Humans, on the other hand, when faced with a problem like this, expect 
the joint probability to be higher than the probability of having the disease given only that one 
tests positive on one of the tests. Such problems of predicting joint probabilities are ubiquitous in 
the real-world use of probabilities. Statistical investigation gives us knowledge of the component 
probabilities, but we frequently have no concrete data enabling us to estimate the joint 
probabilities, and  it is often the joint probabilities that we need Ñ  not the component probabilities 
by themselves. A complete probability distribution would contain explicit knowledge of all the joint 
probabilities, but that is unrealistic. We rarely have the data require d to make explicit statistical 
inferences about joint probabilities.  
 The upshot is that for sufficiently complex problems, we will typically fall far short of having a 
complete probability distribution. Our GIAs and AI assistants must accomodate this fac t. For either 
purpose, we need AI systems that do not require knowledge of complete probability distributions. 
This paper explores one possibility for dealing with this problem. It will be argued that, just as it 
often seems reasonable to make defeasible assumptions of statistical independence, it can also be 
reasonable to make other defeasible assumptions about probabilities that cannot be computed just 
by applying the probability calculus to probabilities we already know. The core idea will be that 
there are inferences not licensed by the probability calculus which are nevertheless almost certain to 
produce correct results regarding unknown probabilities. In other words, the second -order 
probability of the conclusion (about unknown probabilities) being tru e given that the premises 
(about known probabilities) are true is extremely high. Among these inferences will be inferences 
about statistical independence, so this promises to resolve the aforementioned problem of selecting 
which assumptions of statistical  independence to make. To justify these claims, and to make sense 
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of the second-order probabilities involved, we must focus on what kind of probability we are 
talking about. Thus the next section briefly surveys the variety of kinds of probability discusse d in 
the literature on the foundations of probability theory.  

2. Varieties of Probability  

2.1 Subjective Probability  

 Early approaches to probability theory tended to  focus on objective probability, but in response 
to perceived difficulties for objective probability, subjective probability became the dominant 
variety of probability in the last half of the twentieth century, and retains that status today. The 
basic ideas underlying subjective probability were introduced first by Frank Ramsey (1926), but did  
not have much impact at the time. They were rediscovered by Leonard Savage (1954), and it is his 
work that caught on and led to the dominant role of subjective probability today. The basic idea is 
that cognizers have varying degrees of confidence in beliefs about different propositions, and these 
degrees of confidence should affect what bets they are willing to accept. ÒDegree of beliefÓ is a 
technical term, defined as follows: 

 A cognizer S has degree of belief n/( n+r) in a proposition P iff S would accept any bet that 
P is true with odds better than r:n, and S would accept any bet that P is false with odds 
better than n:r. 

Degree of belief is supposed to be a measure of the cognizerÕs degree of confidence. Subjectivists 
assume that a cognizer has a degree of belief in every proposition.  
 There is no guarantee that a cognizerÕs degrees of belief will conform to the probability calculus, 
but if they do they are said to be coherent. The Dutch Book Argument is standardly used to argue that 
a cognizer is being irrational if its degrees of belief are not coherent. This argument turns on the 
notion of a Dutch book, which is a combination of bets on which a person will suffer a collective 
loss no matter what happens. For instance, suppose you are betting on a coin toss and are willing to 
accept odds of 1:2 that the coin will land heads and are also willing to accept odds of 1:2 that the coin 
will land tails. I could then place two bets with you, betting 50 cents against the coin landing heads 
and also betting 50 cents against the coin landing tails, with the result that no matter what happens I 
will have to pay you 50 cents on one bet but you will have to pay me $1 on the other. In other 
words, you have a guaranteed loss Ñ  Dutch book can be made against you. The Dutch book 
argument (due originally to Ramsey 1926) consists of a mathematical proof that if an agentÕs 
degrees of belief do not conform to the probability calculus then Dutch book can be made against 
him. It is alleged that it is irrational to put oneself in such a position, so it cannot be rational to have 
degrees of belief that do not conform to the probability calculus. Thus a completely rational 
cognizer will have degrees of belief that conform to the probability calculus, and these are the 
cognizerÕs subjective probabilities. 
 A standard objection to the Dutch Book Argument is that it is impossible for a real (resource -
bounded) cognizer to have coherent degrees of belief. The difficulty is that it follows from the 
probability calculus (and from the Dutch B ook Argument) that a necessary truth has probability 1 
and a necessarily false proposition has probability 0. I assume that a GIA or an AI-assisted human 
cognizer is capable of reasoning about the propositions expressed by a first-order language. 
However, by ChurchÕs theorem, there is no algorithm for determining whether such propositions 
are necessary truths or necessary falsehoods. Thus there is no computationally possible way to 
ensure that every necessary truth is assigned probability 1 and every necessary falsehood is 
assigned probability 0. 
 Faced with this argument, subjectivists generally retreat to the position that only ideal cognizers 
(unconstrained by limited memory or processing speed) have coherent degrees of belief. For ideal 
cognizers, subjective probabilities are then identified with their actual degrees of belief. The 
difficulty is that neither human beings nor AI agents are ideal cognizers. So this leaves subjective 
probability undefined for them. To get around this difficulty, subjectivist s typically define the 
subjective probability of P for a non-ideal agent S to be the degree of belief S would have in P if S 
were ideally rational. But this is also problematic. Given a non -ideal agent S with incoherent 
degrees of belief, is there any reason to think there is a unique degree of belief S would have in a 
proposition P if S were ideally rational? This, of course, depends upon what constraints rationality 
imposes, but subjectivists typically claim that as long as an agentÕs degrees of belief are coherent, 
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they cannot be criticized on grounds of rationality. In particular, subjectivists give no guidance as to 
how an incoherent set of degrees of belief should be altered to make it coherent. Lacking rules for 
converting incoherent degrees of belief into coherent degrees of belief, there is no such thing as the 
degree of belief S would have in P if S were ideally rational. S could have any degree of belief in P 
and still be rational and long as SÕs overall set of degrees of belief is coherent. 
 The upshot is that subjective probability only seems to make sense for ideal agents. However, AI 
does not deal in ideal agents. Both GIAs and AI-assisted humans have serious resource constraints, 
including bounded memory and processing speed. So it does not seem that subjective probability 
has a place in AI. 

2.2 Objective Probability  

 If subjective probabilities are not useful for AI, it seems we should look to objective 
probabilities. Historically, there have been two general approaches to probability theory. W hat I 
will call generic probabilities2 are general probabilities, relating properties or relations. The generic 
probability of an A being a B is not about any particular A, but rather about the property of being an 
A. In this respect, its logical form is the same as that of relative frequencies. I write generic 
probabilities using lower case ÒprobÓ and free variables: prob(Bx/ Ax). For example, we can talk 
about the probability of an adult male of Slavic descent being lactose intolerant. This is not about 
any particular person Ñ  it expresses a relationship between the property of being an adult male of 
Slavic descent and the property of being lactose intolerant. Most forms of statistical inference or 
statistical induction are most naturally viewed as giving u s information about generic probabilities. 
On the other hand, for many purposes we are more interested in probabilities that are about 
particular persons, or more generally, about specific matters of fact. For example, in deciding how 
to treat Herman, an adult male of Slavic descent, his doctor may want to know the probability that 
Herman is lactose intolerant. This illustrates the need for a kind of probability that attaches to 
propositions rather than relating properties and relations. These are sometimes called Òsingle case 
probabilitiesÓ, although that terminology is not very good because such probabilities can attach to 
propositions of any logical form. For example, we can ask how probable it is that there are no 
human beings over the age of 130. In the past, I called these Òdefinite probabilitiesÓ, but now I will 
refer to them as singular probabilities. 
 The distinction between singular and generic probabilities is often overlooked by contemporary 
probability theorists, perhaps because of the popularity  of subjective probability (which has no 
obvious way to make sense of generic probabilities). But most objective approaches to probability 
tie probabilities to relative frequencies in some essential way, and the resulting probabilities have 
the same logical form as the relative frequencies. That is, they are generic probabilities. 
 The simplest theories identify generic probabilities with relative frequencies. 3 However, it is 
often objected, fairly I think, that such Òfinite frequency theoriesÓ are at least sometimes inadequate 
because our probability judgments often diverge from relative frequencies. For example, we can 
talk about a coin being fair (and so the generic probability of a flip landing heads is 0.5) even when 
it is flipped only once and then des troyed (in which case the relative frequency is either 1 or 0). For 
understanding such generic probabilities, it has been suggested that we need a notion of probability 
that talks about possible instances of properties as well as actual instances. Theories of this sort are 
sometimes called Òhypothetical frequency theoriesÓ. C. S. Peirce was perhaps the first to make a 
suggestion of this sort. Similarly, the statistician R. A. Fisher, regarded by many as Òthe father of 
modern statisticsÓ, identified probabilities with ratios in a Òhypothetical infinite population, of which 
the actual data is regarded as constituting a random sampleÓ (1922, p. 311). Karl Popper (1956, 1957, 
and 1959) endorsed a theory along these lines and called the resulting probabilities propensities. 
Henry Kyburg (1974a) was the first to construct a precise version of this theory (although he did 
not endorse the theory), and it is to him that we owe the name Òhypothetical frequency theoriesÓ. 
Kyburg (1974a) also insisted that von Mises should be considered a hypothetical frequentist. More 
recent attempts to formulate precise versions of what might be regarded as hypothetical frequency 
theories are van Fraassen (1981), Bacchus (1990), Halpern (1990), Pollock (1983, 1984, 1990), and 
Bacchus et al (1996). I will sketch my own proposal below.  
 I do not think that it should be supposed that there is just one sensible kind of generic 

                                                
2 In the past, I followed Jackson and Pargetter 1973 in calling these Òindefinite probabilitiesÓ, but I never liked that 
terminology.  
3 Examples are Russell (1948); Braithwaite (1953); Kyburg (1961, 1974); Sklar (1970, 1973). William Kneale (1949) traces 
the frequency theory to R. L. Ellis, writing in the 1840Õs, and John Venn (1888) and C. S. Peirce in the 1880Õs and 1890Õs. 
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probability. However, in my (1990) I suggested that there is a central kind of generic probability in 
terms of which  a number of other kinds can be defined. This central kind of generic probability is 
what I called nomic probability. Nomic probabilities are supposed to be the subject matter of 
statistical laws of nature. Exceptionless general laws, like ÒAll electrons are negatively chargedÓ, are 
not just about actual electrons, but also about all physically possible electrons. We can think of such 
a law as reporting that any physically possible electron would be negatively charged. This is an 
example of a nomic generalization. We can think of nomic probabilities as telling us instead that a 
certain proportion of physically possible objects of one sort will also have some other property. For 
example, we might have a law to the effect that the probability of a hadron being  negatively 
charged is .5. We can think of this as telling us that half of all physically possible hadrons would be 
negatively charged.  
 After brief thought, most people find the distinction between singular and generic probabilities 
intuitively clear. Ho wever, this is a distinction that sometimes puzzles probability theorists many of 
whom have been raised on an exclusive diet of singular probabilities. They are often tempted to 
confuse generic probabilities with probability distributions over random varia bles. Although 
historically most theories of objective probability were theories of generic probability, 
mathematical probability theory tends to focus exclusively on singular probabilities. When 
mathematicians talk about variables in connection with proba bility, they usually mean Òrandom 
variablesÓ, which are not variables at all but functions assigning values to the different members of 
a population. Generic probabilities have single numbers as their values. Probability distributions 
over random variables are just what their name implies Ñ  distributions of singular probabilities 
rather than single numbers. 
 It has always been acknowledged that for practical decision-making we need singular 
probabilities rather than generic probabilities. For example, in de ciding how to treat Herman, his 
doctor wants to know the probability of his being lactose intolerant, not the probability of Slavs in 
general being lactose intolerant. So theories that take generic probabilities as basic need a way of 
deriving singular pro babilities from them. Theories of how to do this are theories of direct inference. 
Theories of objective generic probability propose that statistical inference gives us knowledge of 
generic probabilities, and then direct inference gives us knowledge of singular probabilities. 
Reichenbach (1949) pioneered the theory of direct inference. The basic idea is that if we want to 
know the singular probability PROB(Fa), we look for the narrowest reference property G such that 
we know the generic probability prob( Fx/ Gx) and we know Ga, and then we identify PROB(Fa) with 
prob(Fx/ Gx). For example, actuarial reasoning aimed at setting insurance rates proceeds in roughly 
this fashion. Kyburg (1974) was the first to attempt to provide firm logical foundations for direct 
inference. Pollock (1990) took that as its starting point and constructed a modified theory with a 
more epistemological orientation. The present paper builds upon some of the basic ideas of the 
latter. 
 What I will argue in this paper is that new mathematica l results, coupled with ideas from the 
theory of nomic probability (Pollock 1990), provide the justification for a wide range of new 
principles supporting defeasible inferences about the expectable values of unknown probabilities. 
These principles include familiar -looking principles of statistical independence and direct inference, 
but they include many new principles as well. For example, among them is a heretofore unnoticed 
principle enabling us to defeasibly estimate the joint probability of Bernard havi ng the disease 
when he tests positive on both tests. I believe that this broad collection of new defeasible inference 
schemes provides the solution to the problem of how  probabilities can be truly useful even when 
we are ignorant about most of them. 

3. Nomic Probability  

 Pollock (1990) developed a possible worlds semantics for objective generic probabilities,4 and I 
will take that as my starting point for the present theory of probable probabilities. I will just sketch 
the theory here. The proposal was that we can identify the nomic probability prob(Fx/ Gx) with the 
proportion of physically possible GÕs that are FÕs. For this purpose, physically possible GÕs cannot be 
identified with possible objects that are G, because the same object can be a G at one possible world 
and fail to be a G at another possible world. Instead, a physically possible G is defined to be an 
ordered pair "w,x# such that w is a physically possible world (one compatible with all of the physical 

                                                
4 Somewhat similar semantics were proposed by Halpern (1990) and Bacchus et al (1996). 
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laws) and x has the property G at w. I assume that for any nomically possible property F (i.e., 
property consistent with the laws of nature), the set F of physically possible FÕs will be infinite. This 
follows from there being infinitely many possible worlds in which there are FÕs. I also assume that 
properties are rather coarsely individuated, in the sense that nomically equivalent properties are 
identical. Equivalently, if F and G are properties, F = G iff F = G. 
 For properties F and G, where F and G are the sets of physically possible FÕs and GÕs 
respectively, let us define the subproperty relation as follows: 

 
F 7  G iff F $ G, i.e., iff it is physically necessary (follows from true physical laws) that ( %x)(Fx 
& Gx). 

We can think of the subproperty relation as a kind of nomic entailment relation ( holding between 
properties rather than propositions). More generally, F and G can have any number of free 
variables, in which case F 7  G iff the universal closure of (F &  G) is physically necessary. 
 Proportion functions are a generalization of measure functions studied in mathematics in 
measure theory. Proportion functions are Òrelative measure functionsÓ. Given a suitable proportion 
function ρ, we could stipulate that:  

  probx(Fx/ Gx) = ρ(F,G).5 

However, it is unlikely that we can pick out the right propor tion function without appealing to 
prob itself, so the postulate is simply that there is some proportion function related to prob as 
above. This is merely taken to tell us something about the formal properties of prob. Rather than 
axiomatizing prob directl y, it turns out to be more convenient to adopt axioms for proportion 
functions. Pollock (1990) showed that, given the assumptions adopted there, ρ and prob are 
interdefinable, so the same empirical considerations that enable us to evaluate prob inductively also 
determine ρ. 
 It is convenient to be able to write proportions in the same logical form as probabilities, so 
where ϕ and θ  are open formulas with free variable x, let ! x(" /#) = ! ({ x |" & #}, { x |#}) . Note that 

probx and !x  are variable-binding operators, binding the variable x. When there is no danger of 
confusion, I will typically omit the subscript Ò xÓ. To simplify expressions, I will often omit the 
variables, writing Òprob(F/ G)Ó for Òprob(Fx/Gx)Ó when no confusion will result.  
 I will make three classes of assumptions about the proportion function . Let #X be the cardinality 
of a set X. If Y is finite, I assume: 

Finite Proportions:  

 For finite X, ρ(A,X) = 
#(A ! X)

# X
. 

 
However, for present purposes the proportion fu nction is most useful in talking about proportions 
among infinite sets. The sets F and G will invariably be infinite, if for no other reason than that 
there are infinitely many physically possible worlds in which there are FÕs and GÕs.  
 My second set of assumptions is that the standard axioms for conditional probabilities hold for 
proportions:  

 0 " ρ(X,Y) " 1; 

 If Y $  X then ρ(X,Y) = 1; 

 If Z ! '  and X( Y( Z = '  then ρ(X) Y,Z) = ρ(X,Z) + ρ(Y,Z); 

 If Z ! '  then ρ(X( Y,Z) = ρ(X,Z) ! ρ(Y,X( Z). 
 

                                                
5  Probabilities relating n-place relations are treated similarly. I will generally just write the one -variable versions of 
various principles, but they generalize to n-variable versions in the obvious way.  
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These axioms automatically hold for relative frequencies among finite sets, so the assumption is just 
that they also hold for proportions among infinite sets.  
 Finally, I need four assumptions about proportions that go beyond merely imposing the 
standard axioms for the prob ability calculus. The four assumptions I will make are:  

Universality:  

 If A $  B, then ρ(B,A) = 1. 

Finite Set Principle:  

 For any set B, N > 0, and open formula * , 
 !

X
" (X)!/!X # B!&!#X = N( ) =    

   
  
! x1 ,...,xN

" ({x1,...,xN })!/ !x1,...,xN  are pairwi se distinct !&!x1,...,xN # B( ) . 

Projection Principle:  

 If 0 " p,q " 1 and (%y)(Gy &  ρx(Fx/ Rxy)+ [p,q]), then ρx,y(Fx/ Rxy & Gy)+ [p,q]. 

Crossproduct Principle:  

 If C and D are nonempty, ! A " B,C " D( ) = ! (A,C)#! (B,D). 

Note that these four principles are all theorems of elementary set theory when the sets in question 
are finite. For instance, the projection principle tells  us is that ρx(Fx/ (, y)(Rxy & Gy)) is a weighted 
average of the values of ρx(Fx/ Rxy) for different values of y. My assumption is simply that ρ 
continues to have these algebraic properties even when applied to infinite sets. I take it that this is a 
fairly conservative set of assumptions. 
 I often hear the objection that in affirming the Crossproduct Principle, I must be making a 
hidden assumption of statistical independence. However, that is to confuse proportions with 
probabilities. The Crossproduct Principle is about proportions Ñ  not probabilities. For finite sets, 
proportions are computed by simply counting members and computing ratios of cardinalities. It 
makes no sense to talk about statistical independence in this context. The crossproduct principle 
holds for finite sets for the simpl e reason that #(A- B) = (#A)!(#B). For infinite sets we cannot just 
count members any more, but the algebra is the same. It is useful to axiomatize nomic probabilities 
indirectly by adopting axioms for proportions because the algebra of proportions is simpl er than 
the algebra of probabilities. 
 Pollock (1990) derived the entire epistemological theory of nomic probability from a single 
epistemological principle coupled with a mathematical theory that amounts to a calculus of nomic 
probabilities. The single epistemological principle is the statistical syllogism, which can be formulated 
as follows:  

Statistical Syllogism:  

If F is projectible with respect to G and r > 0.5, then  ! Gc & prob( F/ G) # r !  is a defeasible 

reason for  ! Fc ! , the strength of the reason being a monotonic increasing function of r.6 

 I take it that the statistical syllogism is a very intuitive principle, and it is clear that we employ it 
constantly in our everyday reasoning. For example, suppose you read in the newspaper that the 
President is visiting Guatemala, and you believe what you read. What justifies your belief? No one 
believes that everything printed in the newspaper is true. What you believe is that certain kinds of 
reports published in certain kinds of newspapers tend to be true, and t his report is of that kind. It is 
the statistical syllogism that justifies your belief.  
 The projectibility constraint in the statistical syllogism is the familiar projectibility constraint on 
inductive reasoning, first noted by Goodman (1955). One might w onder what it is doing in the 
statistical syllogism. But it was argued in (Pollock 1990), on the strength of what were taken to be 
                                                
6 The statistical syllogism was first expressed in this form in Pollock (1983a), but it has a long and distinguished history 
going back at least to C. S Peirce in the 1880Õs. See also Kyburg (1974, 1977). 
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intuitively compelling examples, that the statistical syllogism must be so constrained. Furthermore, 
it was shown that withou t a projectibility constraint, the statistical syllogism is self -defeating, 
because for any intuitively correct application of the statistical syllogism it is possible to construct a 
conflicting (but unintuitive) application to a contrary conclusion. This is the same problem that 
Goodman first noted in connection with induction. Pollock (1990) then went on to argue that the 
projectibility constraint on induction derives from that on the statistical syllogism.  
 The projectibility constraint is important, but  also problematic because no one has a good 
analysis of projectibility. I will not discuss it further here. I will just assume, without argument, that 
the second-order probabilities employed below in the theory of probable probabilities satisfy the 
projectibility constraint, and hence the statistical syllogism can be applied to them  
 The statistical syllogism is a defeasible inference scheme, so it is subject to defeat. I believe that 
the only primitive (underived) principle of defeat required for the stati stical syllogism is that of 
subproperty defeat:  

Subproperty Defeat for the Statistical Syllogism:  

If H is projectible with respect to G, then  ! Hc & prob( F/ G&H) < prob(F/ G) !  is an undercutting 

defeater for the inference by the statistical syllogism from  ! Gc & prob( F/ G) # r !  to  ! Fc ! .7 

In other words, more specific information about c that lowers the probability of its being F 
constitutes a defeater. 
 

4. Limit Theorems and Probable Probabilities 

 I propose to solve the epistemic problem of inadequate probability knowledg e by justifying a 
large collection of defeasible inference schemes for reasoning about probabilities. The key to doing 
this lies in proving some limit theorems about the algebraic properties of proportions among finite 
sets, and proving some general theorems that relate those limit theorems to the algebraic 
properties of nomic probabilities.  

4.1 Probable Proportions Theorem  

 Let us begin with a simple example. Suppose we have a set of 10,000,000 objects. I announce that 
I am going to select a subset, and ask you approximately how many members it will have. Most 
people will protest that there is no way to answer this question. It could have any number of 
members from 0 to 10,000,000. However, if you answer, ÒApproximately 5,000,000,Ó you will 
almost certainly  be right. This is because, although there are subsets of all sizes from 0 to 10,000,000, 
there are many more subsets whose sizes are approximately 5,000,000 than there are of any other 
size. In fact, 99% of the subsets have cardinalities differing from 5,000,000 by less than .08%. If we let 
Òx!!

"
!yÓ mean Òthe difference between x and y is less than or equal to δÓ, the general theorem is: 

Finite Indifference Principle:   

 For every ε,δ > 0 there is an N such that if U is finite and #U > N then 

  
  
! X ! (X ,U)!"

#
!0.5!/ !X $ U( ) %1&' .  

Proof: See appendix. 

In other words, t o any given degree of approximation, the proportion of subsets of U which are 
such that ρ(X,U) is approximately equal to .5, goes to 1 as the size of U goes to infinity. To see why 

this is true, suppose #U = n. If r " n, the number of r-membered subsets of U is 
  
C(n, r ) =

n!

r !(n ! r )!
. It 

                                                
7 There are two kinds of defeaters. Rebutting defeaters attack the conclusion of an inference, and undercutting defeaters 
attack the inference itself without attacking the conclusion. Here I assume some form of the OSCAR theory of defeasible 
reasoning (Pollock 1995). For a sketch of that theory see Pollock (2006a). 
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is illuminating to plot C(n,r) for variable r and various fixed values of n. See figure 1. This illustrates 

that the sizes of subsets of U will cluste r around 
  

n
2

, and they cluster more tightly as n increases. 

C(n,r) becomes Òneedle-likeÓ in the limit. As we proceed, I will state a number of similar 
combinatorial theorems, and in each case they have similar intuitive explanations. The cardinalities 
of relevant sets are products of terms of the form C(n,r), and their distribution becomes needle-like 
in the limit.  

 

   
 

Figure 1. C(n,r) for n = 100, n = 1000, and n = 10000.  

 
 The Finite Indifference Principle  is our first example of an instance of a general combinatorial 
limit theorem. To state the general theorem, we need the notion of a linear constraint. Linear 
constraints either state the values of certain proportions, e.g., stipulating that ρ(X,Y) = r, or they 
relate proportio ns using linear equations. For example, if we know that X = Y) Z, that generates 
the linear constraint  

 ρ(X,U) = ρ(Y,U) + ρ(Z,U) Ð ρ(X( Z,U). 

 Our strategy will be to approximate the behavior of constraints applied to infinite domains by 
looking at their beh avior in sufficiently large finite domains. Some linear constraints may be 
inconsistent with the probability calculus. We will want to rule those out of consideration, but we 
will need to rule out others as well. The difficulty is that there are sets of co nstraints that are 
satisfiable in infinite domains but not satisfiable in finite domains. For example, if r is an irrational 
number between 0 and 1, the constraint Òρ(X,Y) = rÓ is satisfiable in infinite domains but not in 
finite domains. Let us define:  

 
LC is finitely unbounded iff for every positive integer K there is a positive integer N such that if 

#U = N then #
  

X1,...,Xn | LC!&!X1,...,Xn ! U{ }  # K. 

For the purpose of approximating the behaviors of constraints in infinite domains by exploring 
their behavior in finite domains, I will confine my attention to finitely unbounded sets of linear 
constraints. If LC is finitely unbounded, it must be consistent with the probabil ity calculus, but the 
converse is not true. I think that by appealing to limits, it should be possible to generalize the 
following results to all sets of linear constraints that are consistent with the probability calculus, but 
I will not pursue that here.  
 The key theorem we need is then: 

Probable Proportions Theorem:  

Let U,X1,É, Xn be a set of variables ranging over sets, and consider a finitely unbounded finite 
set LC of linear constraints on proportions between Boolean compounds  of those variables. 
Then for any pair of relations P,Q whose variables are a subset of U,X1,É, Xn there is a unique 
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real number r in [0,1] such that for every ε,δ > 0, there is an N such that if U is finite and 

#
  

X1,...,Xn | LC!&!X1,...,Xn ! U{ }  # N then 

 
  
! X1 ,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U( ) %1&' . 

Proof: See appendix. 

Let us refer to this unique r as the limit solution for ρ(P/Q) given LC. For all of the choices of 
constraints we will consider, finite unboundedness will be obvious, so the limit solution will ex ist. 
This theorem, which establishes the existence of the limit solution under very general 
circumstances, underlies all of the principles developed in this paper. It is important to realize that it 
is just a combinatorial theorem about finite sets, and as such is a theorem of set theory. It does not 
depend on any of the assumptions we have made about proportions in infinite sets. Thus far the 
mathematics is not philosophically questionable.  
 What we will actually want are particular instances of this theor em for particular choices of LC 
and specific values of r. An example is the Finite Indifference Principle. In general, LC generates a 
set of simultaneous equations, and the limit solution r can be determined by solving those 
equations. The simultaneous equations are the term-characterizations discussed in the appendix in the 
proof of the Probable Proportions Theorem. It turns out that these equations can be generated 
automatically and then solved automatically by a computer algebra program. To my surprise, 
neither Mathematica nor Maple has proven effective in solving these sets of equations, but I was 
able to write a special purpose LISP program that is fairly efficient. It computes the term -
characterizations and solves them for the variable when that is possible. It can also be directed to 
produce a human-readable proof. If the equations constituting the term -characterizations do not 
have analytic solutions, they can still be solved numerically to compute the most probable values of 
the variables in specific cases. This software can be downloaded from http://oscarhome.soc -
sci.arizona.edu/ftp/OSCAR -web-page/CODE/ Code for probable probabilities.zip . I will refer to 
this as the probable probabilities software. The proofs of many of the theorems presented in this paper 
were generated using this software. 

4.2 Limit Principle for Proportions  

 The Probable Proportions Theorem and its instances are mathematical theorems about finite 
sets. For example, the Finite Indifference Principles tells us that as N &  . , if U is finite but contains 
at least N members, then the proportion of subsets X of a set U which are such that 

  
!(X ,U )!"

#
!0.5  

goes to 1. This suggests that the proportion is 1 when U is infinite:  

 If U is infinite then for every δ > 0, 
  
! X ! (X ,U)!"

#
!0.5!/ !X $ U( ) = 1. 

Given the rather simple assumptions I made about ρ in section three, we can derive such infinitary 
principles from the corresponding finite principles. We first prove in familiar ways:  

Law of Large Numbers for Proportions:  

 If B is infinite and ρ(A/B) = p then for every ε,δ > 0, there is an N such that 

 
  
! X ! (A / X)!"

#
p!/ !X $ B!&!X!is!finite!&!#X %N( ) %1&' . 

Proof: See appendix. 

Unlike Laws of Large Numbers for probabilities, the Law of Large Numbers for Proportions does 
not require an assumption of statistical independence. This is because it is derived from the 
crossproduct principle, and as remarked in section three, no such assumption is required (or even 
intelligible) for the crossproduct principle.  
 The Law of Large Numbers for Proportions provides the link for  moving from the behavior of 
linear constraints in finite sets to their behavior in infinite sets. It enables us to prove:  
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Limit Principle for Proportions:  

Consider a finitely unbounded finite set LC of linear constraints on proportions between 
Boolean compounds of a list of variables U,X1,É, Xn. Let r be limit solution for ρ(P/Q) given LC. 
Then for any infinite set U, for every δ > 0: 

  
  
! X1 ,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U( ) = 1. 

Proof: See appendix. 

 This is our crucial Òbridge theoremÓ that enables us to move from combinatorial theorems 
about finite sets to principles about proportions in infinite sets. This, together with the Probable 
Proportions Theorem, constitute the central theorems of this paper. They will allow us to establish 
many more concrete theorems. Thus, for example, from the Finite Indifference Principle we can 
derive: 

Infinitary Indifference Principle:   

 If U is infinite then for every δ > 0, 
  
! X ! (X ,U)!"

#
!0.5!/ !X $ U( ) = 1. 

4.4 Probable Probabilities  

 Nomic probabilities are proportions among physically possible objects. Recall that I have 
assumed that for any nomically possible property F (i.e., property consistent with the laws of 
nature), the set F of physically possible FÕs is be infinite. Thus the Limit Principle for Proportions 
implies an analogous principle for nomic probabilities:  

Probable Probabilities Theorem:  

Consider a finitely unbounded finite set LC of linear constraints on propor tions between 
Boolean compounds of a list of variables U,X1,É, Xn. Let r be limit solution for ρ(P/Q) given LC. 
Then for any infinite set U, for every δ > 0, 

  
   
probX1 ,...,Xn

prob(P/ Q)!!
"

!r !/ !LC!&!X1,...,Xn7 !U( ) = 1. 

Proof: See appendix. 

 I sometimes hear the objection that in proving theorems like the Probable Probabilities 
Theorem I must be making a hidden assumption about unif orm distributions. It is not clear what 
lies behind this objection. I gave the proof. Where is the gap supposed to be? Talk of uniform 
distributions makes no sense as applied to either proportions or generic probabilities. I suspect that 
those who raise this objection are confusing generic probabilities with probability distributions over 
random variables, as discussed in section three. 
 Instances of the Probable Proportions Theorem tell us the values of the limit solutions for sets of 
linear constraints, and hence allow us to derive instances of the consequent of the Probable 
Probabilities Theorem. I will call the latter Òprobable probabilities principlesÓ. For example, from 
the Finite Indifference Principle we get:  

Probabilistic Indifference Principle:   

For any nomically possible property G and for every δ > 0, 

   
probX prob(X / G)!!

"
!0.5!/ !X!7 !G( ) = 1.8 

                                                
8 If we could assume countable additivity for nomic probability, the Indifference Principle would imply that 

   
probX prob(X / G)!=!0.5!/ !X!7 !G( ) = 1. Countable additivity  is generally assumed in mathematical probability theory, 

but most of the important writers in the foundations of probability theory, including de Finetti (1974), Reichenbach 
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4.5 Justifying Defeasible Inferences about Probabilities  

 Next note that we can apply the statistical syllogism to the second-order probability formulated 
in the probabilistic indifference principle. For every δ > 0, this gives us a defeasible reason for 
expecting that if F 7 G, then 

  
prob(F/ G)!!

"
!0.5, and these conclusions jointly entail that prob(F/G) = 

0.5. For any property F, (F&G) 7 G, and prob(F/G) = prob(F&G/G). Thus we are led to a defeasible 
inference scheme: 

Indifference Principle:   

For any properties F and G, if G is nomically possible then it is defeasibly reasonable to assume 
that prob(F/G) = 0.5. 

 The Indifference Principle  is my first example of a principle of probable probabilities. We have a 
quadruple of principles that go together: (1) the Finite Indifference Principle, which is a theorem of 
combinatorial mathematics; (2) the Infinitary Indifference Principle, which follows from the finite 
principle given the law of large numbers for proportions; (3) t he Probabilistic Indifference Principle, 
which is a theorem derived from (2); and (4) the Indifference Principle, which is a principle of 
defeasible reasoning that follows from (3) with the help of the statistical syllogism. All of the 
principles of probab le probabilities that I will discuss have analogous quadruples of principles 
associated with them. Rather than tediously listing all four principles in each case, I will encapsulate 
the four principles in the simple form:  

Expectable Indifference Principle:   

For any properties F and G, if G is nomically possible then the expectable value of prob(F/G) = 
0.5. 

So in talking about expectable values, I am talking about this entire quadruple of principles. Our 
general theorem is: 

Principle of Expectable Values  

Consider a finitely unbounded finite set LC of linear constraints on proportions between 
Boolean compounds of a list of variables U,X1,É, Xn. Let r be the limit  solution for ρ(P/Q) given 
LC. Then given LC, the expectable value of prob(P/Q) = r. 
 

 I have chosen the Indifference Principle as my first example of a principle of probable 
probabilities because the argument for it is simple and easy to follow. But this principle is only 
occasionally useful. If we were choosing the properties F in some random way, it w ould be 
reasonable to expect that prob(F/G) = 0.5. However, pairs of properties F and G which are such that 
prob(F/G) = 0.5 are not very useful to us from a cognitive perspective, because knowing that 
something is a G then carries no information about whet her it is an F. As a result, we usually only 
enquire about the value of prob( F/G) when we have reason to believe there is a connection 
between F and G such that prob(F/G) ! 0.5. Hence in actual practice, application of the Indifference 
Principle to cases that really interest us will almost invariably be defeated. This does not mean, 
however, that the Indifference Principle is never useful. For instance, if I give Jones the opportunity 
to pick either of two essentially identical balls, in the absence of information to the contrary it seems 
reasonable to take the probability of either choice to be .5. This can be justified as an application of 
the Indifference Principle.  
 That applications of the Indifference Principle are often defeated illustrates an important point 
about nomic probability and principles of probable probabilities. The fact that a nomic probability is 
1 does not mean that there are no counter-instances. In fact, there may be infinitely many counter -
instances. This should be familiar from standard measure theory. Consider the probability of a real 
number being irrational. Plausibly, this probability is 1, because the cardinality of the set of 
irrationals is in finitely greater than the cardinality of the set of rationals. But there are still infinitely 

                                                                                                                                                                            
(1949), Jeffrey (1983), Skyrms (1980), Savage (1954), and Kyburg (1974), have either questioned it or rejected it outright. 
Pollock (2006) gives what I consider to be a compelling counter-example to countable additivity. So I will have to 
remain content with the more complex formulation of the Indifference Principle.  
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many rationals. The set of rationals is infinite, but it has measure 0 relative to the set of real 
numbers. 
 A second point is that in classical probability theor y (which is about singular probabilities), 
conditional probabilities are defined as ratios of unconditional probabilities:  

  PROB(P/Q) = 
  

PROB(P& Q)
PROB(Q)

. 

However, for generic probabilities, there are no unconditional probabilities, so conditional 
probabilities must be taken as primitive. These are sometimes called ÒPopper functionsÓ. The first 
people to investigate them were Karl Popper (1938, 1959) and the mathematician Alfred Renyi 
(1955). If conditional probabilities are defined as above, PROB(P/Q) is undefined when PROB(Q) = 0. 
However, for nomic probabilities, prob( F/G&H) can be perfectly well-defined even when 
prob(G/H) = 0. One consequence of this is that, unlike in the standard probability calculus, if 
prob(F/G) = 1, it does not follow that prob(F/G&H) = 1. Specifically, this can fail when prob(H/G) = 
0. Thus, for example, 

  prob(2x is irrational/ x is a real number) = 1 

but 

  prob(2x is irrational/ x is a real number & x is rational) = 0. 

In the course of developing the theory of probable prob abilities, we will find numerous examples 
of this phenomenon, and they will generate defeaters for the defeasible inferences licensed by our 
principles of probable probabilities.  

5. Statistical Independence 

 Now let us turn to a truly useful principle of probable probabilities. It was remarked above that 
probability practitioners commonly assume statistical independence when they have no reason to 
think otherwise, and so compute that prob( A&B/ C) = prob(A/ C)!prob(B/ C). This assumption is 
ubiquitous in almost every application of probability to real -world problems. However, the 
justification for such an assumption has heretofore eluded probability theorists, and when they 
make such assumptions they tend to do so apologetically. We are now in a position to provide a 
justification for a general assumption of statistical independence. Recall that our general strategy is 
to formulate our assumptions as a set of finitely unbounded linear constraints, and then find t he 
limit solution by solving the set of simultaneous equations generated by them (the term 
characterizations). This can usually be done using the probable probabilities software. In this case 
we get: 

Finite Independence Principle:  

For all rational numbers  r,s between 0 and 1, given that X,Y,Z $  U & ρ(X,Z) = r & ρ(Y,Z) = s, 

the limit solution for   ! (X " Y ,Z)  is r!s.9 

Proof: See appendix. 

As before, this generates the four principles making up the following principle of expectable values:  

                                                
9 This illustrates that to get finite unboundedness, we often have to restrict the various parameters mentioned in LC to 
rational numbers. I am convinced that this restriction should be inessential. One can go ahead and solve the term 
characterizations in the same way for the cases in whichthe parameters are irrational, and I am inclined to endorse the 
resulting principles of  probable probabilities. However, at this point I am unsure how to justify this.  
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Principle of Expectable Statistical Independence : 

For rational numbers r,s between 0 and 1, given that prob(A/C) = r and prob(B/C) = s, the 

expectable value of prob(A&B/ C) = r!s. 

So a provable combinatorial principle regarding finite sets ultimately makes it reasonable to expect, 
in the absence of contrary information, that arbitrarily chosen properties will be statistically 
independent of one another. This is the reason why, when we see no connection between 
properties that would force them to be statisticall y dependent, we can reasonably expect them to be 
statistically independent.  This solves one of the major unsolved problems of the application of 
probabilities to real -world problems.  

6. Defeaters for Statistical Independence 

 Of course, the assumption of statistical independence sometimes fails. Clearly, this can happen 
when there are causal connections between properties. But it can also happen for purely logical 
reasons. For example, if A = B, A and B cannot be independent unless r = 1. In general, when A and 
B ÒoverlapÓ, in the sense that there is a D such that (A&C),(B&C) 7  D and prob(D/C) ! 1, then we 
should not expect that prob(A&B/C) = prob(A/C)!prob(B/C). This follows from the following 
principle of expectable probabilities:  

Principle of Statistical Independence with Overlap : 

If r,s,g are rational numbers between 0 and 1, given that prob(A/C) = r, prob(B/C) = s, 

prob(D/C) = g, (A&C) 7  D, and (B&C) 7  D, it follows that prob( A/C&D) = r/g, prob(B/C&D) = 

s/g, and the following values are expectable: 

(1)  prob(A&B/C) = 
 

r !s
g

; 

(2) prob(A&B/C&D ) = 
  

r !s
g2 . 

This can be proven automatically using the probable probabilities software. This proof, and the 
proofs of many other theorems left unproven in this paper, are also reproduced in the longer 
version of this paper, available on my website at http://oscarhome.s oc-
sci.arizona.edu/ftp/PAPERS/Probable Probabilities with proofs.pdf  

 To illustrate statistical independence with overlap using a simple and intuitive case, suppose A = 
A0 & D and B = B0 & D. Given no reason to think otherwise, we would expect A0, B0, and D to be 
statistically independent. But then we would expect that  

 prob(A&B/C) = prob(A0&D&B0/C) = prob(A0/C) ! prob(D/C) ! prob(B0/C) 

   = 
  

prob(A0 & D/ C) !prob(B0 & D/ C)

prob(D / C)
= 

 

r !s
g

. 

 The upshot is that, given the overlap, we can expect A and B to be statistically independent 
relative to (C&D), but not relative to C. The second-order probability to which the statistical 
syllogism is applied to generate (1) in the Principle of Statistical Independence with Overlap is:  
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probX,Y,Z,W

prob(X & Y / Z)!!
"

!
r #s
g

!/ !

X,Y,Z,W!7 !U !and!prob(X / Z) = r !and!prob(Y / Z) = s

and!(X & Z)!7  W!and!(Y & Z)!7  !and!prob(W / Z) = g!and!prob(W / U) = $

and!prob(X / U) = %!and!prob(Y / U) = &!and!prob(Z / U) = '

(

)

*
*
*
*
*
*

+

,

-
-
-
-
-
-

= 1. 

On the other hand, the second-order probability to which the statistical syllogism is applied to 
generate the Principle of Statistical Independence was: 

 

   

probX,Y,Z

prob(X & Y / Z)!!
"

!r #s!/ !
X,Y,Z!7 !U !and!prob(X / Z) = r !and!prob(Y / Z) = s

and!prob(X / U) = $ !and!prob(Y / U) = %!and!prob(Z / U) = &

'

(

)
)
)
)

*

+

,
,
,
,

= 1. 

The former probability takes account of more information than the latter, so it provides a 
subproperty defeater for the use of the statistical syllogism and hence an undercutting defeater for 
the Principle of Statistical Independence: 

Overlap Defeat for Statistical Independence:  

£(A&C) 7  D, (B&C) 7  D, and prob(D/C) ! 1 á is an undercutting defeater for the inference 
from £prob(A/C) = r and prob(B/C) = sá to £prob(A&B/C) = r ⋅ sá by the Principl e of Statistical 
Independence. 

 Suppose you know that prob( A/C) = r and prob(B/C) = s, and are inclined to infer that 
prob(A&B/C) = r⋅s. As long as r,s < 1, there will always be a D such that (A&C) 7  D, (B&C) 7  D, 
and prob(D/C) ! 1. Does this mean that the inference is always defeated? It does not, but 
understanding why is a bit complicated. First, what we know in general is the existential 
generalization (, D)[(A&C) 7  D and (B&C) 7  D and prob(D/C) ! 1]. But the defeater requires 
knowing of a specific such D. The reason for this is that it is not true in general that prob(Fx/Rxy) = 
prob(Fx/(, y)Rxy). For example, let Fx be Òx = 1Ó and let Rxy be Òx < y & x,y are natural numbers " 
2Ó. Then prob(Fx/Rxy) = ! , but prob(Fx/(, y)Rxy) = $. Accordingly, we cannot assum e that  

 

   

probX,Y,Z,W

prob(X & Y / Z)!!
"

!r #s!/ !
X,Y,Z,W!7 !U !and!prob(X / Z) = r !and!prob(Y / Z) = s!and!

(X & Z)!7  W!and!(Y & Z)!7  !and!prob(W / Z) = g!and!prob(W / U) = $

and!prob(X / U) = %!and!prob(Y / U) = &!and!prob(Z / U) = '

(

)

*
*
*
*
*

+

,

-
-
-
-
-

 

 = 

   

probX,Y,Z

prob(X & Y / Z)!!
"

!r #s!/ !
($W)($g)($%)[X,Y,Z,W!7 !U !and!prob(X / Z) = r !and!prob(Y / Z) = s!and

(X & Z)!7  W!and!(Y & Z)!7  !and!prob(W / Z) = g!and!prob(W / U) =%

and!prob(X / U) = &!and!prob(Y / U) = ' !and!prob(Z / U) = ( ]

)

*

+
+
+
+
+

,

-

.

.

.

.

.

 

and hence merely knowing that ( , D)[(A&C) 7  D and (B&C) 7  D and prob(D/C) ! 1] does not give 
us a defeater. In fact, it is a theorem of the calculus of nomic probabilities that if , [B &  C] then 
prob(A/B) = prob(A/B&C). So because 

 , [(prob( A/C) = r and r,s < 1 and prob(B/C) = s)  
  &  (, D)(, g)(, ζ)[(A&C) 7  D and (B&C) 7  D and prob(D/C) = g and prob(D/U) = ζ]]  

it follows that  
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Hence the mere fact that there always is such a D does not automatically give us a defeater for the 
application of the Principle of Statistical Independence. To get defeat, we must know of some specific 
D such that (A&C) 7  D and (B&C) 7  D and prob(D/C) ! 1.  
 But now it may occur to the reader that t here is a second strategy for generating automatic 
defeat. We can always construct a specific such D, namely, (A /  B). However, it turns out that this 
choice of D does not give us a defeater. In fact, 
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This is because, once again, 

 , [(prob( A/C) = r and prob(B/C) = s)  
  &  (, g)(, ζ)[(A&C) 7  (A /  B) and (B&C) 7  (A /  B)  
    and prob(A /  B/C) = g and prob(A /  B/U) = ζ]].  

Notice that the latter depends upon our not knowing the value of g. If we do know th at prob(A/C) 
= r, prob(B/C) = s, and prob(A /  B/C) = g, then we can simply compute by the probability calculus 
that prob( A&B/C) = r + s Ð g, in which case the application of the defeasible inference to the contrary 
conclusion is conclusively defeated. 
 The preceding can be generalized. There are many ways of automatically generating properties 
D such that (A&C) 7  D and (B&C) 7  D. For example, given some fixed set E, we can define: 

 µ(A,B) = A /   B /   E. 

But again, 

 , [(prob( A/C) = r and prob(B/C) = s)  
  &  (, g)(, ζ)[(A&C) 7  µ(A,B) and (B&C) 7  µ(A,B) 
    and prob(µ(A,B)/C) = g and prob(µ(A,B)/U) = ζ]]  

so 

   

probX,Y,Z

prob(X & Y / Z)!!
"
!r #s!/ !

X,Y,Z!7 !U !and !prob(X / Z) = r !and !prob(Y / Z) = s!and!(X & Z)!7  µ(X,Y)

and !(Y & Z)!7  µ(X,Y)!and !($g)prob(µ(X,Y)/ Z) = g!and!($%)prob(µ(X,Y)/ U) = %

and !prob(X / U) = & !and !prob(Y / U) = ' !and !prob(Z / U) = (

)

*

+
+
+
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 = 1. 
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 These observations illustrate a general phenomenon that will recur for all of our defeasible 
principles of expectable probabilit ies. Defeaters cannot be generated by functions that apply 
automatically to the properties involved in the inference. For example, in obtaining overlap 
defeaters for the Principle of Statistical Independence, we must have some substantive way of 
picking ou t D that does not pick it out simply by reference to A, B, and C. 
 In sections seven and nine we will encounter additional undercutting defeaters for the Principle 
of Statistical Independence. 

7. Nonclassical Direct Inference 

 Pollock (1984) noted (using different terminology) the following principle of probable 
probabilities:  

Nonclassical Direct  Inference : 

If r is a rational number between 0 and 1, and prob(A/B) = r, the expectable value of 

prob(A/B&C) = r. 

This is a kind of Òprinciple of insufficient reasonÓ. It tells us that if we have no reason for thinking 
otherwise, we should expect that strengthening the reference property in a nomic probability 
leaves the value of the probability unchanged. This is called Ònonclassical direct inferenceÓ because, 
although it only licenses inferences from generic probabilities to other generic probabilities, it turns 
out to have strong formal similarities to classical direct inference (which licenses inferences from 
generic probabilities to singular probabilities), and as we will see in section eight, principles of 
classical direct inference can be derived from it. 
 Probability theorists have not taken formal note of the Principle of Nonclassical Direct Inference, 
but they often reason in accordance with it.  For example, suppose we know that the probability of 
a twenty year old male driver in Maryland having an auto accident over the course of a year is .07. 
If we add that his girlfriendÕs name is ÒMarthaÓ, we do not expect this to alter the probability. There 
is no way to justify this assumption within a traditional probability framework, but it is justified by 
Nonclassical Direct Inference. In fact, the Principle of Nonclassical Direct Inference is equivalent 
(with one slight qualification) to the defeasible Principle o f Statistical Independence. This turns upon 
the following simple theorem of the probability calculus:  

Independence and Direct Inference Theorem : 

 If prob( C/B) > 0 then prob(A/B&C) = prob(A/B) iff prob( A&C/B) = prob(A/B)!prob(C/B). 

As a result, anyone who shares the commonly held intuition that we should be able to assume 
statistical independence in the absence of information to the contrary is also committed to 
endorsing Nonclassical Direct Inference . This is important, because I have found that many people 
do have the former intuition but balk at the latter.  
 Nonclassical Direct Inference is a principle of defeasible reasoning, so it is subject to defeat. The 
simplest and most important kind of defeater is a subproperty defeater. Suppose C 7 D 7 B and we 
know that prob( A/B) = r, but prob(A/D) = s, where s ! r. This gives us defeasible reasons for 
drawing two incompatible conclusions, viz., that prob( A/C) = r and prob(A/D) = s. The principle of 
subproperty defeat tells us that because D 7 B, the latter inference takes precedence and defeats the 
inference to the conclusion that prob(A/C) = r: 

Subproperty Defeat for Nonclassical Direct Inference:  

If C 7  D 7 B, prob(A/ D) = s, prob(A/ B) = r, prob(A/ U) = a, prob(B/ U) = b, prob(C/ U) = c, 

prob(D/ U) = d, then the expectable value of prob(A/C) = s (rather than r). 

 Because the principles of nonclassical direct inference and statistical independence are equivalent, 
subproperty defeaters for nonclassical direct inference generate analogous defeaters for the 
Principle of Statistical Independence: 
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Principle of Statistical  Independence with Subproperties : 

If prob( A/C) = r, prob(B/C) = s, (B&C) 7  D 7 C, and prob(A/D) = p ! r, then the expectable 

value of prob( A&B/C) = p!s (rather than r!s). 

Subproperty Defeat for Statistical Independence:  

£(B&C) 7  D 7 C and prob(A/D) = p ! rá is an undercutting defeater for the inference by the 

Principle of Statistical Independence from £prob(A/C) = r & prob(B/C) = sá to £prob(A&B/ C) = 

r!sá. 

Consider an example of subproperty defeat for Statistical Independence. Suppose we know that 
prob(x is more than a year old/ x is a vertebrate) = 0.15, and prob(x is a fish/ x is a vertebrate) = 0.8, 
and we want to know the value of prob( x is more than a year old & x is a fish/ x is a vertebrate). In 
the absence of any other information it would be reasonable to assume that being a fish and being 
more than a year old are statistically independent relative to Òx is a vertebrateÓ, and hence prob(x is 
more than a year old & x is a fish/ x is a vertebrate) = 0.15!0.8 = 0.12. But suppose we also know 
prob(x is more than a year old/ x is an acquatic animal) = 0.2. Should this make a difference? 
Relying upon untutored intuition may leave one unsure. However, being a vertebrate and a fish 
entails being an acquatic animal, so additional information gives us a subproperty defeater for the 
assumption of statistical independence. What we should conclude instead is that prob(x is more 
than a year old & x is a fish/ x is a vertebrate) = 0.2!0.8 = 0 .16. 
 By virtue of the equiva lence of the principles of Nonclassical Direct Inference and Statistical 
Independence, defeaters for the Principle of Statistical Independence also yield defeaters for 
Nonclassical Direct Inference. In particular, overlap defeaters for the Principle of Statistical 
Independence yield overlap defeaters for Nonclassical Direct Inference. We have the following 
theorem: 

Principle of Nonclassical Direct Inference with Overlap : 

If B&D 7  G and C&D 7  G then the expectable value of prob(B/C&D) = 
  

prob(B/ D)
prob(G/ D)

. 

Note that if G 7  D then 
  

prob(B/ D)
prob(G/ D)

= prob(B/ G), so £B&D,C&D 7  G 7  Dá is a defeasible reason 

for £prob(B/C&D) = prob(B/ G)á. 

 This is an interesting generalization of Nonclassical Direct Inference. Although probabilists 
commonly  reason in accordance with Nonclassical Direct Inference in practical applications (without 
endorsing the formal principle), untutored intuition is not apt to lead them to reason in accordance 
with Nonclassical Direct Inference with Overlap. To the best of my knowledg e, Nonclassical Direct 
Inference with Overlap has gone unnoticed in the probability literature. Nonclassical Direct 
Inference with Overlap yields the standard principle of Nonclassical Direct Inference when D is 
tautologous. 
 Nonclassical Direct Inference with Overlap is subject to both subproperty defeat and overlap 
defeat, just as the standard principle is: 

Subproperty Defeat for Nonclassical Direct Inference with Overlap : 

£(C&D) 3  E 3  D and prob(B/ E) ! rá is an undercutting defeater for the inference by 

Nonclassical Direct Inference with Overlap from £B&D,C&D 7  Gá to £prob(B/C&D) = 

  

prob(B/ D)
prob(G / D)

á. 
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Overlap Defeat for Nonclassical Direct Inference with Overlap :  

£B&D 7  H, C&D 7  H and prob(Gx/ Dx) ! prob( Hx/ Dx)á is an undercutting defeater for the 
inference by Nonclassical Direct Inference with Overlap from £B&D 7  G and C&D 7  Gá to 

£prob(B/C&D) = 
  

prob(B/ D)
prob(G/ D)

á. 

8. Classical Direct Inference 

 Direct inference is normally understood a s being a form of inference from generic probabilities 
to singular probabilities rather than from generic probabilities to other generic probabilities. 
However, it was shown in Pollock (1990) that these inferences are derivable from Nonclassical 
Direct Inf erence if we identify singular probabilities with a special class of generic probabilities. The 
present treatment is a generalization of that given in Pollock (1984 and 1990).10 Let K  be the 
conjunction of all the propositions the agent is warranted in beli eving,11 and let K be the set of all 
physically possible worlds at which K  is true (ÒK -worldsÓ). I propose that we define the singular 
probability PROB(P) (written in small caps) to be the proportion of K -worlds at which P is true. 
Where P is the set of all physically possible P-worlds:  

  PROB(P) = ρ(P,K). 

More generally, where Q is the set of all physically possible Q-worlds, we can define: 

  PROB(P/Q) = ρ(P, Q (  K). 

This makes singular probabilities sensitive to the agentÕs knowledge of his situation, which is what 
is needed for rational decision making.12 Formally, singular probabilities become analogous to 
CarnapÕs (1950, 1952) logical probability, with the important difference that Carnap took ρ to be 
logically specified, whereas here the identity of ρ is taken to be a contingent fact. ρ is determined by 
the values of contingently true nomic probabilities, and their values are discovered by various 
kinds of statistical induction.  
 It turns out that singular probabilities, so defined, can be identified with a special class of nomic 
probabilities:  

Representation Theorem for Singular Probabilities:  

(1) PROB(Fa) = prob(Fx/ x = a & K ); 

(2) If it is physically necessary that [K  &  (Q 0  Sa1É an)] and that [(Q&K) &  (P 0  Ra1É an)], and 
Q is consistent with K , then PROB(P/ Q) = prob(Rx1É xn/ Sx1É xn & x1 = a1 & É & xn = an & K ). 

(3) PROB(P) = prob(P & x=x/ x = x & K ). 

Proof: See appendix. 

PROB(P) is a kind of Òmixed physical/epistemic probab ilityÓ, because it combines background 
knowledge in the form of K  with nomic probabilities.  
 The probability prob( Fx/ x = a & K ) is a peculiarÐlooking nomic probability. It is a generic 
probability, because ÒxÓ is a free variable, but the probability is only about one object. As such it 
cannot be evaluated by statistical induction or other familiar forms of statistical reasoning. 
However, it can be evaluated using nonclassical direct inference. If K  entails Ga, nonclassical direct 
inference gives us a defeasible reason for expecting that PROB(Fa) = prob(Fx/ x = a & K ) = 
prob(Fx/Gx). This is a familiar form of ÒclassicalÓ direct inference Ñ  that is, direct inference from 
generic probabilities to singular probabilities. More generally, we can derive:  

                                                
10 Bacchus (1990) gave a somewhat similar account of direct inference, drawing on Pollock (1983 ,1984). 
11 What an agent is justified in believing at a time depends on how much reasoning he has done. A proposition is 
warranted for an agent iff the agent would be justified in believing it if he could do all the relevant reasoni ng. 
12 For a further complication, see the literature on causal probability, as discussed for example in Pollock (2006). 
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Classical D irect Inference:  

£Sa1É an is known  and prob(Rx1É xn/  Sx1É xn & Tx1É xn) = rá is a defeasible reason for 

£PROB(Ra1É an /  Ta1É an) = rá. 

Similarly, we get subproperty defeaters:  

Subproperty Defeat for Classical Direct Inference:  

£V 7  S, Va1É an is known , and prob(Rx1É xn/  Vx1É xn & Tx1É xn) ! rá is an undercutting 

defeater for the inference by classical direct inference from £Sa1É an is known and 

prob(Rx1É xn/  Sx1É xn & Tx1É xn) = rá to £PROB(Ra1É an /  Ta1É an) = rá. 

 Classical Direct Inference and Subproperty Defeat are (versions of) the two best known 
principles of direct inference. Pollock (1983) proposed them as precizations of ReichenbachÕs 
seminal principles of direct inference, and Kyburg (1974) and Bacchus (1990) built their theories 
around similar principles. However , as Kyburg was the first to observe, these two principles do not 
constitute a complete theory of direct inference. This is illustrated by overlap defeat, and we will 
find other defeaters too as we proceed: 

Overlap Defeat for Classical Direct Inference:  

The conjunction of 

(i)  Rx1É xn & Sx1É xn & Tx1É xn 7  Gx1É xn and 

(ii) (Sx1É xn & Tx1É xn & x1 = a1 & É & xn = an & K ) 7  Gx1É xn and 

(iii) prob(Gx1É xn/  Sx1É xn & Tx1É xn) ! 1  

is an undercutting defeater for the inference by classical direct inference from £Sa1É an is known 

and prob(Rx1É xn/  Sx1É xn & Tx1É xn) = rá to £PROB(Ra1É an /  Ta1É an) = rá. 

 Because singular probabilities are generic probabilities in disguise, we can also use nonclassical 
direct inference to infer singular probabilities from singular probabilities. T hus £PROB(P/ Q) = rá 
gives us a defeasible reason for expecting that PROB(P/ Q&R) = r. We can employ principles of 
statistical independence similarly. For example, £PROB(P/ R) = r & PROB(Q/ R) = sá gives us a 
defeasible reason for expecting that PROB(P&Q/ R) = r!s. And we get principles of subproperty 
defeat and overlap defeat for these applications of Nonclassical Direct Inference and Statistical 
Independence that are exactly analogous to the principles for generic probabilities. 

9. Computational Inheritance  

 The biggest problem faced by most theories of direct inference concerns what to do if we have 
information supporting conflicting direct inferences. For example, suppose Bernard has symptoms 
suggesting, with probability .6, that he has a certain rare disease. Suppose furthere that we have 
two seemingly unrelated  diagnostic tests for a disease, and Bernard tests positive on both tests. We 
know that the probability of a person with his symptoms having the disease if he tests positive on 
the first test is .7, and the probability if he tests positive on the second test is .75. But what should 
we conclude about the probability of his having the disease if he tests positive on both tests? The 
probability calculus gives us no guidance here. It is consistent with the  probability calculus for the 
Òjoint probabilityÓ of his having the disease if he tests positive on both tests to be anything from 0 
to 1. The Principle of Classical Direct inference as formulated in section eight is no help either. Direct 
inference gives us one reason for thinking the probability of Bernard having the disease is .7, and it 
gives us a different reason for drawing the conflicting conclusion that the probability is .75. The 
result, endorsed in Pollock (1990), is that both instances of Classical Direct Inference are defeated (it 
is a case of collective defeat), and we are left with no conclusion to draw about the singular 
probability of BernardÕs having the disease. Because this sort of situation is so common, Classical 
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Direct Inference is not generally very useful. Kyburg (1974) tried to do better by proposing that 
Direct Inference locates singular probabilities in intervals. In this case his conclusion would be that 
the probability of Bernard having the disease is (or lies in the interval) [.7 ,.75]. But intuitively, this 
also seems unsatisfactory. If Bernard tests positive on both tests, the probability of his having the 
disease should be higher than if he tests positive on just one, so it should lie above the interval 
[.7,.75]. But how can we justify this?  
 Knowledge of generic probabilities would be vastly more useful in real application if there were 
a function Y(r,s: a) such that when prob(F/U) = a, G,H 7 U, prob(F/G) = r and prob(F/H) = s we 
could defeasibly expect that prob(F/ G&H) = Y(r,s: a), and hence (by Nonclassical Direct Inference) 
that PROB(Fc) = Y(r,s: a). I call this computational inheritance, because it computes a new value for 
PROB(Fc) from previously known generic probabilities. Direct inference, by contrast, is a kind of 
Ònoncomputational inheritanceÓ. It is direct in that PROB(Fc) simply inherits a value from a known 
generic probability. I call the function used in computational inheritance Òthe Y -functionÓ because 
its behavior would be as diagrammed in figure 2.  
 

prob(F/U) = a and G,H 7 U 
 

prob(F/ G) = r      prob(F/ H) = s 
 
 
 
 
 
 

prob(F/ G&H) = Y(r,s: a) 
 
 

Figure 2. The Y-function  

 Following Reichenbach (1949), it has generally been assumed that there is no such function as 
the Y-function. Certainly, there is no function Y( r,s: a) such that we can conclude deductively that 
prob(F/ G&H) = Y(r,s: a). For any r, s, and a that are neither 0 nor 1, prob(F/ G&H) can take any 
value between 0 and 1. However, that is equally true for Nonclassical Direct Inference. That is, if 
prob(F/ G) = r we cannot conclude deductively that prob( F/ G&H) = r. Nevertheless, that will tend 
to be the case, and we can defeasibly expect it to be the case. Might something similar be true of the 
Y-function? That is, could there be a function Y(r,s: a) such that we can defeasibly expect 
prob(F/ G&H) to be Y(r,s: a)? It follows from the Probable Probabilities Theorem that the answer is 
ÒYesÓ. Let us define:  

 Y(r,s: a) =
rs(1! a)

a(1! r ! s) + rs
 

I use the non-standard notation ÒY(r,s: a)Ó rather than ÒY(r,s,a)Ó because the first two variables will 
turn out to work differently than the last variable.  
 Let us define: 

 

B and C are Y-independent for A relative to U iff A,B,C 7  U and 

 (a) prob(C/  B & A) = prob(C/ A) 

and 

 (b) prob(C/ B & ~A) = prob(C/ U & ~A). 

The key theorem underlying co mputational inheritance is the following theorem of the probability 
calculus: 
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Y-Theorem:  

Let r = prob(A/ B), s = prob(A/ C), a = prob(A/ U), and 0 < a < 1. If B and C are Y-independent  

for A relative to U then prob(A/ B&C) = Y(r,s: a). 

In light of the Y -theorem, we can think of Y-independence as formulating an independence 
condition for C and D which says that they make independent contributions to A Ñ  contributions 
that combine in accordance with the Y-function, rather than ÒunderminingÓ each other. 
 By virtue  of the Principle of Statistical Independence, we have a defeasible reason for expecting 
that the independence conditions (a) and (b) hold. Thus the Y-theorem supports the following  
principle of expectable values (which can also be proven directly using t he probable probabilities 
software): 

Y-Principle:  

If B,C 7  U, prob(A/ B) = r, prob(A/ C) = s, prob(A/ U) = a, prob(B/U) = b, prob(C/U) = c, and 0 < 

a < 1, then the expectable value of prob(A/ B & C) = Y(r,s: a). 

Note that the expectable value of prob(A/ B & C) is independent of b and c. 
 To get a better feel for what the Y-Principle tells us, it is useful to examine plots of the Y-
function. Figure 3 illustrates that Y(r,s: .5) is symmetric around the right -leaning diagonal. 

 
 

Figure 3. Y(z,x: .5), holding z constant 
(for several choices of z as indicated in the key). 
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Figure 4. Y(z,x: a) holding z constant (for several 
choices of z), for a = .7, a = .3, a = .1, and a = .01. 

 

 Varying a has the effect of warping the Y-function up or down relative to the right -leaning 
diagonal. This is illustrated in figure 4 for several choices of a.  
 Note that, in general, when r,s < a then Y(r,s: a) < r and Y(r,s: a) < s, and when r,s > a then 
Y(r,s: a) > r and Y(r,s: a) > s. 
 The Y-function has a number of important properties .13 In particular, it is important that the Y -
function is commutative and associative in the first two variables:  

Y-commutativity:  Y(r,s: a) = Y(s,r: a). 

Y-associativity:  Y(r,Y(s,t: a): a) = Y(Y(r,s: a),t: a). 

                                                

13 It turns out that the Y -function has been studied for its desirable mathematica l properties in the theory of 
associat ive compensatory aggregation operators in fuzzy logic (Dombi 1982; Klement, Mesiar, and Pap 1996; Fodor, 

Yager, and Rybalov 1997). Y(r ,s: a) is the function D 1(r,s) for 1 = 
  

1! a

a

 (Klement, Mesiar, and Pap 1996). The Y-

theorem may provide further justif ica tion for its use in that connection.  
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Commutativity and associativity are important for the  use of the Y-function in computing 
probabilities. Suppose we know that prob(A/B) = .6, prob(A/ C) = .7, and prob(A/ D) = .75, where 
B,C,D 7  U and prob(A/U) = .3. In light of comutativity and associativity we can combine the first 
three probabilities in any order and infer defeasibly that prob( A/B&C&D) = Y(.6,Y(.7,.75: .3): .3) = 
Y(Y(.6,.7: .3),.75: .3) = .98. This makes it convenient to extend the Y-function recursively so that it 
can be applied to an arbitrary number of arguments (greater than or equal to 3): 

 If n # 3, Y(r1,É, rn: a) = Y(r1,Y(r2,É, rn: a) : a). 

Then we can then strengthen the Y-Principle as follows:   

Compound Y -Principle : 

If B1,É, Bn 7  U, prob(A/ B1) = r1,É, prob( A/ Bn) = rn, and prob(A/ U) = a, the expectable value of 

prob(A/  B1 &É& Bn & C) = Y(r1,É, rn: a). 

 If we know that prob( A/ B) = r and prob(A/ C) = s, we can also use Nonclassical Direct Inference 
to infer defeasibly that prob( A/ B&C) = r. If s ! a, Y(r,s: a) ! r, so this conflicts with the conclusion 
that prob( A/ B&C) = Y(r,s: a). However, as above, the inference described by the Y-principle is 
based upon a probability with a more inclusive reference property than that underlying 
Nonclassical Direct Inference (that is, it takes account of more information), so it takes precedence 
and yields an undercutti ng defeater for Nonclassical Direct Inference: 

Y-Defeat Defeat for Nonclassical Direct Inference : 

£A,B,C 7  U and prob(A/C) ! prob( A/U)á is an undercutting defeater for the inference from 

£prob(A/ B) = rá to £prob(A/ B&C) = rá by Nonclassical Direct Inference. 

It follows that we also have a defeater for the Principle of Statistical Independence: 

Y-Defeat Defeat for Statistical Independence : 

£A,B,C 7  U and prob(A/B) ! prob( A/U)á is an undercutting defeater for the inference from 

£prob(A/C) = r & prob( B/C) = sá to £prob(A&B/ C) = r!sá by Statistical Independence. 

 The phenomenon of Computational Inheritance makes knowledge of generic probabilities 
useful in ways it was never previously useful. It tells us how to combine different probabilities that 
would lead to conflicting direct inferences and still arrive at a univocal value. Consider Bernard 
again. We are supposing that  the probability of a person with his symptoms having the disease is 
.6. We also suppose the probability of such a person having the disease if they test positive on the 
first test is .7, and the probability of their having the disease if they test positive on the  second test is 
.75. What is the probability of their having the disease if they test positive on both tests? We can 
infer defeasibly that it is Y(.7,.75: .6) = .875. We can then apply classical direct inference to conclude 
that the probability of BernardÕs having the disease is .875. This is a result that we could not have 
gotten from either the probability calculus alone or from Classical Direct Inference. Similar 
reasoning will have significant practical applications, for example in engineering where we h ave 
multiple imperfect sensors sensing some phenomenon and we want to arrive at a joint probability 
regarding the phenomenon that combines the information from all the sensors.  
 Again, because singular probabilities are generic probabilities in disguise, w e can apply 
computational inheritance to them as well and infer defeasibly that if PROB(P) = a, PROB(P/Q) = r, and 
PROB(P/R) = s then PROB(P/Q&R) = Y(r,s: a). 
 Somewhat surprisingly, when prob(C/A) ! prob( C/U) and prob(B/A) ! prob( B/U), Y-
independence conflicts with ordinary independence:  

Theorem 3: If B and C are Y-independent for A relative to U and prob(C/A) ! prob( C/U) and 
prob(B/A) ! prob( B/U) then prob(C/B) ! prob( C/U). 

 Theorem 3 seems initially surprising, because we have a defeasible assumption of independence 
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for B and C relative to all three of A, U& ~A, and U. Theorem 3 tells us that if A is statistically 
relevant to B and C then we cannot have all three. However, this situation is common. Consider the 
example of two sensors B and C sensing the presence of an event A. Given that one sensor fires, the 
probability of A is higher,  but raising the probability of A will normally raise the probability of the 
other sensor firing. So B and C are not statistically independent. However, knowing whether an 
event of type A is occurring screens off the effect of the sensors on one another. For example, 
knowing that an event of type A occurs will raise the probability of one of the sensors firing, but 
knowing that the other sensor is firing will not raise that probability further. So prob( B/C&A) = 
prob(B/A) and prob(B/C&~A) = prob(B/U&~A). 
 The defeasible presumption of Y-independence for A is based upon a probability that takes 
account of more informati on than the probability grounding the defeasible presumption of 
statistical independence relative to U, so the former takes precedence. In other words, in light of 
theorem 3, we get a defeater for Statistical Independence whenever we have an A 7 U such that 
prob(A/C) ! prob( A/U) and prob(A/B) ! prob( A/U): 

Y-Defeat for Statistical Independence:  

£prob(A/C) ! prob( A/U) and prob(A/B) ! prob( A/U)á is an undercutting defeater for the 
inference from £prob(A/C) = r and prob(B/C) = sá to £prob(A&B/C) = r ⋅ sá by the Principle of 
Statistical Independence. 

 The application of the Y-function presupposes that we know the base rate prob(A/U) . But 
suppose we do not. Then what can we conclude about prob(A/B&C)? It might be supposed that we 
can combine Indifference and the Y-Principle and conclude that prob( A/ B&C) = Y(r,s: .5). That 
would be interesting because, as Joseph Halpern has pointed out to me (in correspondence), this is 
equivalent to DempsterÕs Òrule of compositionÓ for belief functions (Shafer 1976).14 However, by 
ignoring the b ase rate prob(A/ U), that theory will often give intuitively incorrect results. For 
example, in the case of the two tests for the disease, suppose the disease is rare, with a base rate of 
.1, but each positive test individually confers a probability of .4 t hat the patient has the disease. Two 
positive tests should increase that probability further. Indeed, Y(.4,.4: .1) = .8. However, Y(.4,.4: .5) = 
.3, so if we ignore the base rate, two positive tests would lower the probability of having the 
disease instead of raising it.  
 The reason the Dempster-Shafer rule does not give the right answer when we are ignorant of 
the base rate is that, although when we are completely ignorant of the value of prob(A/U) it is 
reasonable to expect it to be .5, knowing the values of prob(A/B) and prob(A/C) changes the 
expectable value of prob(A/U). Let us define Y0(r,s) to be Y(r,s: a) where a, b, and c are the solutions 
to the following set of three simultaneous equations (for fixed r and s): 

 
2a3 ! (b + c ! 2b"r ! 2c"s! 3)a2

!!!+(b"c + 2b"r ! b"cr + 2c"s! b"c"s+ 2b"c"r "s! b ! c +1)a ! b"c"r "s = 0;
 

 
1! s

1+ (s! a)c
"
#$

%
&'

1! s
s

a ! s(c
"
#$

%
&'

s

= 1; 

 
1! r

1+ (r ! a)b
"
#$

%
&'

1! r
r

a ! r (b
"
#$

%
&'

r

= 1. 

 

Then we have the following principle:  

                                                
14 See also Bacchus et al (1996). Given very restrictive assumptions, their theory gets the special case of the Y-Principle in 
which a = .5, but not the general case. 
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Y0-Principle:  

If prob( A/ B) = r and prob(A/ C) = s, then the expectable value of prob(A/ B&C) = Y0(r,s). 

If a is the expectable value of prob(A/ U) given that prob( A/ B) = r and prob(A/ C) = s, then Y0(r,s) = 
Y(r,s: a). However, a does not in general have a simple analytic characterization. Y0(r,s) is plotted in 
figure 6, and the default values of prob( A/U) are plotted in figure 6. Note how the curve for Y0(r,s) 
is twisted with respec t to the curve for Y(r,s: .5) (in figure 3). 

 

     
 

 Figure 5. Y0(r,s), holding s constant (for Figure 6. Default values of prob(A/U) (for 
 several choices of s as indicated in the key) several choices of s as indicated in the key) 
 

10. Domination Defeaters for the Statistical Syllogism 

 The defeasible inferences licensed by our principles of probable probabilities are obtained by 
applying the statistical syllogism to second -order probabilities. It turns out that the principles of 
probable probabilities have important implications for the statistical syllogism itself. In stating the 
principle of the statistical syllogism in section three, the only primitive defeater that I gave was that 
of subproperty defeat. However, in Pollock (1990), it was argued that w e must supplement 
subproperty defeaters with what were called Òdomination defeatersÓ. Suppose that in the course of 
investigating a certain disease, Roderick's syndrome, it is discovered that 98% of the people having 
enzyme E in their blood have the disease. This becomes a powerful tool for diagnosis when used in 
connection with the statistical syllogism. However, the use of such information is complicated by 
the fact that we often have other sorts of statistical information as well. First, in statistical 
investigations of diseases, it is typically found that some factors are statistically irrelevant. For 
instance, it may be discovered that the color of one's hair is statistically irrelevant to the reliability of 
this diagnostic technique. Thus, for example, it is also true that 98% of all redheads having enzyme 
E in their blood have the disease. Second, we may discover that there are specifiable circumstances 
in which the diagnostic technique is unreliable. For instance, it may be found that of patients 
undergoing radiation therapy, only 32% of those with enzyme E in their blood have Roderick' s 
syndrome. As we have found hair color to be irrelevant to the reliability of the diagnostic technique, 
we would not ordinarily go on to collect data about the effect o f radiation therapy specifically on 
redheads. Now consider Jerome, who is redheaded, undergoing radiation therapy, and is found to 
have enzyme E in his blood. Should we conclude that he has Roderick's syndrome? Intuitively, we 
should not, but this cannot be explained directly by the statistical syllogism and subproperty defeat. 
We have statistical knowledge about the reference properties B = person with enzyme E in his blood, C 
= redheaded person, and D = person who is undergoing radiation therapy. Letting A be the property of 
having Roderick' s syndrome, we know that:  
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(1)  Bc & prob( Ax/ Bx) = .98. 
 

(2)  Bc & Cc & prob( Ax/ Bx&Cx) = .98. 
 

(3)  Dc & prob( Ax/ Bx&Dx) = .32. 

 

   (1) Bc & prob( Ax/ Bx) = r 

         (3) Dc & prob( Ax/ Bx& Dx) < r 

 

                     (2) Bc & Cc & prob( Ax/ Bx&Cx) = r 

 

         domination defeat? 

                                   (4) Ac 
 

Figure 7. Domination defeat 

(1), (2), and (3) are related as in figure 7, where the solid arrow indicates a defeat relation and the 
dashed arrows signify inference relations. By the statistical syllogism, both (1) and (2) constitute 
defeasible reasons for concluding that Jerome has Roderick's syndrome. (3) provides a subproperty 
defeater for the inference from (1), but it does not defeat the inference from (2). Thus it should be 
reasonable to infer that because Jerome is a redhead and most redheads with enzyme E in their 
blood have Roderick's syndrome, Jerome has Roderick's syndrome. Formally, the fact that Jerome 
is undergoing radiation therapy should n ot defeat the inference from (2), because that is not more 
specific information than the fact that Jerome has red hair. But, obviously, this is wrong. We regard 
Jerome's having red hair as irrelevant. The important inference is from the fact that most peop le 
with enzyme E in their blood have Roderick' s syndrome to the conclusion that Jerome has 
Roderick's syndrome, and we regard that inference as undefeated. Pollock (1990) took this example 
to support the need for a new kind of defeater for the statistical syllogism . Domination defeaters were 
supposed to have the effect of making (3) defeat the inference from (2) to (4) by virtue of the fact 
that (2) defeats the inference the inference from (1) to (4) and prob(Ax/ Bx) = prob(Ax/ Bx&Cx): 

Domination Defeat : 

If A is projectible with respect to D, then £Dc & prob( A/ B) = prob(A/ B&C) & prob( A/ B&D) < 
prob(A/ B)á is an undercutting defeater for the inference from £Bc & Cc & prob( A/ B&C) = rá to 
£Acá by the statistical syllogism. 

 What I will show here is that by appealin g to the Y-Principle, we can derive domination 
defeaters from subproperty defeaters without making any further primitive assumptions. 
Applying the Y -Principle to (1), (2), and (3), we get: 

Expectable Domination : 

If B,C,D 7  U, prob(A/ B) = r, prob(A/ B&D) = v < r, and prob(A/ U) = a, then the expectable 
value of prob( A/ B&C&D) = Y(v,a: a) = v < r. 

We can diagram the relations between these probabilities as in figure 8. The upshot is that we can 
infer defeasibly that prob(A/ B&C&D) = prob(A/ B&D), and this gives us a subproperty defeater for 
the inference from (2) to (4). Thus domination defeaters become derived defeaters. Note that this 
argument does not depend on the value of a. It works merely on the supposition that there is some 
base-rate a, and that is a necessary truth.  
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 Bc & prob( A/ B) = r      Dc & prob( A/ B&D) = v < r 

          

          
               
 

    Bc & Cc & prob( A/ B&C) = r 

 

  Ac      Dc & prob( A/ B&C&D) = Y(v,r: r) = v < r 
 
 

Figure 8. Reconstructing Domination Defeat 

 Somewhat surprisingly, do mination defeat can be generalized. If we have prob(A/ B&C) = s �†  r, 
we can still infer that prob( A/ B&C&D) = Y(v,s: r). It is a general property of the Y-function that if v 
< r and s �†  r then Y(v,s: r) < v and Y(v,s: r) < s. Hence we get: 

Generalized Dominatio n Defeat : 

If s " r then £Dc & prob( A/ B) = r & prob( A/ B&D) < rá is an undercutting defeater for the 
inference from £Bc & Cc & prob( A/ B&C) = sá to £Acá by the statistical syllogism. 

11. Inverse Probabilities 

 All of the principles of probable probabilities t hat have been discussed so far are related to 
defeasible assumptions of statistical independence. As we have seen, Nonclassical Direct Inference is 
equivalent to a defeasible assumption of statistical independence, and the Y-Principle follows from a 
defeasible assumption of Y-independence. This might suggest that all principles of probable 
probabilities derive ultimately from various defeasible independence assumptions. However, this 
section presents a set of principles that do not appear to be related to statistical independence in any 
way. 
 Where A,B 7 U, suppose we know the value of prob( A/B). If we know the base rates prob(A/U) 
and prob(B/U), the probability calculus enables us to compute the value of the inverse probability 
prob(~B/~A&U): 

Theorem 4: If A,B 7 U then 

  prob(~B/~ A&U) = 
  

1 ! prob(A / U) ! prob(B/ U) + prob(A / B) "prob(B/ U)
1! prob(A / U)

. 

However, if we do not know the base rates then the probability calculus imposes no constraints on 
the value of the inverse probability. It can nevertheless be shown that there are expectable values 
for it, and generally, if prob( A/B) is high, so is prob(~B/~A&U). 

Inverse Probabilities I : 

If A,B 7 U and we know that prob( A/ B) = r, but we do not know the base rates prob(A/ U) 
and prob(B/ U), the following values are expectable: 

  prob(B/ U) = 
  

.5
r r (1 ! r )1! r + .5

; 
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  prob(A/ U) = 
  
.5!

.25! .5r
r r (1 ! r )1! r + .5

; 

  prob(~A/~ B&U) = .5; 

  prob(~B/~ A&U) = 
  

r r

(1 ! r )r + r r . 

These values are plotted in figure 9. Note that when prob(A/ B) > prob(A/ U), we can expect 
prob(~B/~ A&U) to be almost as great as prob(A/ B). 

 

 
 

Figure 9. Expectable values of prob(~B/~A&U), prob(A/U), 
and prob(B/U), as a function of prob(A/B), 

when the base rates are unknown. 

 Sometimes we know one of the base rates but not both: 

Inverse Probabilities II : 

If A,B 7 U and we know that prob( A/ B) = r and prob(B/ U) = b, but we do not know the base 
rate prob(A/ U) , the following values are expectable: 

  prob(A/ U) = .5(1 Ð (1 Ð 2r)b); 

  prob(~A/~ B&U) = 
  

.5+ b(.5! r)
1+ b(1 ! r)

; 

  prob(~B/~ A&U)) = 
  

1 ! b
1+ b(1! 2r )

. 

 

 Figure 10 plots the expectable values of prob(~B/~ A&U) (for values greater than .5) as a 
function of prob( A/ B), for fixed values of prob( B/ U). The diagonal dashed line indicates the value 
of prob(A/ B), for comparison. The upshot is that for low values of prob( B/ U), prob(~B/~ A&U) can 
be expected to be higher than prob(A/ B), and for all values of prob(B/ U), prob(~B/~ A&U) will be 
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fairly high if prob( A/ B) is high. Furthermore, prob(~ B/~ A&U) > .5 iff prob(B/ U) < 
  

1
3 ! 2r

. 

 

 
 

Figure 10. Expectable values of prob(~B/~A&U) as a 
function of prob( A/B), when prob(A/U) is 
unknown, for fixed values of prob( B/U). 

 

 The most complex case occurs when we do know the base-rate prob(A/ U) but we do not know 
the base-rate prob(B/ U): 

Inverse Probabilities III : 

If A,B 7 U and we know tha t prob(A/ B) = r and prob(A/ U) = a, but we do not know the base 
rate prob(B/U), then: 

(a) where b is the expectable value of prob(B/ U), 
  

r ! b
a" r ! b

#
$%

&
'(

r
! (1" r )b

1" a" (1" r )b
#
$%

&
'(

1" r
= 1; 

(b) the expectable value of prob(~B/~ A&U) = 
  
1!

1! r

1! a
b . 

The equation characterizing the expectable value of prob(B/ U) does not have a closed-form 
solution. However, for specific values of a and r, the solutions can be computed using hill-climbing 
algorithms (included in the probable probabilities software). The results are plotted in f igure 11. 
When prob(A/ B) = prob(A/ U), the expected value for prob(~B/~ A) is .5, and when prob(A/ B) > 
prob(A/ U), prob(~B/~ A&U) > .5. If prob(A/ U) < .5, the expected value of prob(~B/~ A&U) is 
greater than prob(A/ B). 
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Figure 11. Expectable values of prob(~B/~A&U) as a 
function of prob( A/B), when prob(B/U) is 
unknown, for fixed values of prob( A/U). 

 
 The upshot is that even when we lack knowledge of the base rates, there is an expectable value 
for the inverse probability prob( ~B/~A&U), and that expectable value tends to be high when 
prob(A/B) is high. 

12. Meeting Some Objections 

 I have argued that mathematical results, coupled with the statistical syllogism, justify defeasible 
inferences about the values of unknown probabilities. Various worries arise regar ding this 
conclusion. A few people are worried about any defeasible (non-deductive) inference, but I 
presume that the last 50 years of epistemology has made it amply clear that, in the real world, 
cognitive agents cannot confine themselves to conclusions drawn deductively from their evidence. 
We employ multitudes of defeasible inference schemes in our everyday reasoning, and the 
statistical syllogism is one of them. 
 Granted that we have to reason defeasibly, we can still ask what justifies any particular 
defeasible inference scheme. At least in the case of the statistical syllogism, the answer seems clear. 
If prob( A/B) is high, then if we reason defeasibly from things being B to their being A, we will 
generally get it right. That is the most we can require of a defeasible inference scheme. We cannot 
require that the inference scheme will always lead to true conclusions, because then it would not be 
defeasible. People sometimes protest at this point that they are not interested in the general case. 
They are concerned with some inference they are only going to make once. They want to know 
why they should reason this way in the single case. But all cases are single cases. If you reason in 
this way in single cases, you will tend to get them right. It does not seem that you can ask for any 
firmer guarantee than that. You cannot avoid defeasible reasoning. 
 But we can have a further worry. For any defeasible inference scheme, we know that there will 
be at possible cases in which it gets things wrong. For each principle of probable probabilities, the 
possible exceptions constitute a set of measure 0, but it is still an infinite set. The cases that actually 
interest us tend to be highly structured, and perhaps they also constitute a set of measure 0. How 
do we know tha t the latter set is not contained in the former? Again, there can be no logical 
guarantee that this is not the case. However, the generic probability of an arbitrary set of cases 
falling in the set of possible exceptions is 0. So without further specification of the structure of the 
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cases that interest us, the probability of the set of those cases all falling in the set of exceptions is 0. 
Where defeasible reasoning is concerned, we cannot ask for a better guarantee than that. 
 We should resist the temptation to think of the set of possible exceptions as an amorphous 
unstructured set about which we cannot reason using principles of probable probabilities. The 
exceptions are exceptions to single defeasible inference schemes. Many of the cases in which a 
parti cular inference fails will be cases in which there is a general defeater leading us to expect it to 
fail and leading us to make a different inference in its place. For example, knowing that prob( A/B) = 
r gives us a defeasible reason to expect that prob(A/B&C) = r. But if we also know that prob( A/C) = 
s and prob(A/U) = a, the original inference is defeated and we should expect instead that 
prob(A/B&C) = Y(r,s| a). So this is one of the cases in which an inference by nonclassical direct 
inference fails, but it is a defeasibly expectable case. 
 There will also be cases that are not defeasibly expectable. This follows from the simple fact that 
there are primitive nomic probabilities representing statistical laws of nature. These laws are novel, 
and cannot be predicted defeasibly by appealing to other nomic probabilities. Suppose prob( A/B) = 
r, but £prob(A/B&C) = sá is a primitive law. The latter is an exception to nonclassical direct 
inference. Furthermore, we can expect that strengthening the reference property further will result 
in nomic probabilities like £prob(A/B&C&D ) = sá, and these will also be cases in which the 
nonclassical direct inference from £prob(A/B) = rá fails. But, unlike the primitive law, the latter is a 
defeasibly expectable failure arising from subproperty defeat. So most of the cases in which a 
particular defeasible inference appealing to principles of probable probabilities fails will be cases in 
which the failure is defeasibly predictable by appealing to other principles of probable probabil ities. 
This is an observation about how much structure the set of exceptions (of measure 0) must have. 
The set of exceptions is a set of exceptions each to just a single rule, not to all principles of probable 
probabilities. The Probable Probabilities Theorem implies that even within the set of exceptions to a 
particular defeasible inference scheme, most inferences that take account of the primitive nomic 
probabilities will get things right, with probability 1.  

13. Conclusions 

 The problem of sparse probability knowledge results from the fact that in the real world we lack 
direct knowledge of most probabilities. If probabilities are to be useful, we must have ways of 
making defeasible estimates of their values even when those values are not computable from 
known probabilities using the probability calculus. Within the theory of nomic probability, limit 
theorems from finite combinatorial mathematics provide the necessary basis for these inferences. It 
turns out that in very general circumstances, there will be  expectable values for otherwise 
unknown probabilities. These are described by principles telling us that although certain inferences 
from probabilities to probabilities are not deductively valid, nevertheless the second -order 
probability of their yielding  correct results is 1. This makes it defeasibly reasonable to make the 
inferences. 
 I illustrated this by looking at Indifference, Statistical Independence, Classical and Nonclassical 
Direct Inference, the Y-Principle , and Inverse Probabilities. But these are just illustrations. There are 
a huge number of useful principles of probable probabilities, some of which I have investigated, but 
most waiting to be discovered. I proved the first such principles laboriously by hand. It took me six 
months to find and prove the Y-Principle. But it turns out that there is a uniform way of finding and 
proving these principles.  This made it possible to write the probable probabilities software that 
analyzes the results of linear constraints and determines what the expectable values of the 
probabilities are. That software produces a proof of the Y-Principle in a matter of seconds. 
 Nomic probability and the principles of probable probability are reminiscent of CarnapÕs logical 
probabilities (Carnap 1950, 1952; Hintikka 1966; Bacchus et al 1996). Historical theories of objective 
probability required probabilities to be assessed by empirical methods, and because of the 
weakness of the probability calculus, they tended to leave us in a badly impoverished epistemic 
state regarding most probabilities. Carnap tried to define a kind of probability for which the values 
of probabilities were determined by logic alone, thus vitiating the need for empirical investigation. 
However, finding the right probability measure to employ in a theo ry of logical probabilities 
proved to be an insurmountable problem.  
 Nomic probability and the theory of probable probabilities lies between these two extremes. 
This theory still makes the values of probabilities contingent rather than logically necessary,  but it 
makes our limited empirical investigations much more fruitful by giving them the power to license 
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defeasible, non-deductive, inferences to a wide range of further probabilities that we have not 
investigated empirically. Furthermore, unlike logical probability, these defeasible inferences do not 
depend upon ad hoc postulates. Instead, they derive directly from provable theorems of 
combinatorial mathematics. So even when we do not have sufficient empirical information to 
deductively determine the valu e of a probability, purely mathematical facts may be sufficient to 
make it reasonable, given what empirical information we do have, to expect the unknown 
probabilities to have specific and computable values. Where this differs from logical probability is 
(1) that the empirical values are an essential ingredient in the computation, and (2) that the 
inferences to these values are defeasible rather than deductive. 
 

Appendix: Proofs of Theorems 
 

 
4. Limit Theorems and Probable Probabilities 

Finite Indifference Principle:   
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Theorem 2: As n ! " , 
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nk' 1

= (1+ 2k)nk' 1 ( ) .   !  

Thus we have the Finite Indifference Principle .  

Probable Proportions Theorem:  

Let U,X1,É, Xn be a set of variables ranging over sets, and consider a finitely unbounded finite 
set LC of linear constraints on proportions between Boolean compounds  of those variables. 
Then for any pair of relations P,Q whose variables are a subset of U,X1,É, Xn there is a unique 
real number r in [0,1] such that for every ε,δ > 0, there is an N such that if U is finite and 

#
  

X1,...,Xn | LC!&!X1,...,Xn ! U{ }  # N then 

 
  
! X1 ,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U( ) %1&' . 

Proof: Assume then that LC is finitely unbounded. For each intersection of elements of the set 
{X1,É, Xn}, e.g, X( Y( Z, let the corresponding lower -case variable xyz be ρ(X( Y( Z/U). Given a set 
of linear constraints on these variables, the cardinality of an element X of the partition is a function 
f(x)!u of x (x may occur vacuously, in which case f(x) is a constant function). I will refer to the f(x)Õs as 
the partition-coefficients. Because the constraints are linear, for each f(x) there is a positive or negative 
real number r such that  f(x+ε) = f(x)+r!ε!u. If r < 0, I will say that x has a negative occurrence. 
Otherwise, x has a positive occurrence. It is a general characteristic of partitions that each variable has 
the same number k of positive and negative occurrences. Let a1(x),É, ak(x) be the partition -
coefficients in which x has a positive occurrence, and let b1(x),É, bk(x) be those in which x has a 
negative occurrence. In most cases we will consider, r = 1 or r = -1, but not in all. The terms r!ε  
represent the amount a cell of the partition changes in size when x is incremented by ε. However, 
the sizes of the cells must still sum to u, so the sum or the rÕs must be 0. For each i " k, let ri be the 
real number such that ai(x+ε) = ai(x) + riε and let si be the real number such that bi(x+ε) = bi(x) Ð siε. So 

  r1 + ...+ rk = s1 + ...+ sk . Note further that a1(x)!u ,É, ak(x)!u,b1(x)!u,É, bk(x)!u are the cardinalities of the 

elements of the partition, so they must be non-negative. That is, for any value ξ of x that is 
consistent with the probability c alculus (an ÒallowableÓ value of x), a1(ξ),É, ak(ξ),b1(ξ),É, bk(ξ) must 
be non-negative. It follows that if ξ is an allowable value of x, ξ + ε is an allowable value only if for 

every i " k, 
  
! <

bi (" )

s1

, and ξ - ε is an allowable value only if f or every i " k, 
  
! <

ai (" )

r1
. 

 Define 

  Prd(x) = (a1(x)u)!...(ak(x)u)!(b1(x)u)!...(bk(x)u)! 
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Our interest is in what happens as u &  . . For fixed values of the other variables, the most probable 

value of x occurs when 
  

Prd x + 1
u( )

Prd(x)
 &  1 as u &  . . (This assumes that the curve has no merely local 

minima, but that is proven below in the course of proving the Probable Values Lemma.)  

  
  

Prd x + 1
u( )

Prd(x)
 = 

  

a1 x + 1
u( )u( )!

(a1(x)u)!
...

ak x + 1
u( )u( )!

(ak(x)u)!

b1 x + 1
u( )u( )!

(b1(x)u)!
...

bk x + 1
u( )u( )!

(bk(x)u)!
 

  = 
  

a1(x)u + r1( )!
(a1(x)u)!

...
ak(x)u + rk( )!
(ak(x)u)!

b1(x)u ! s1( )!
(b1(x)u)!

...
bk(x)u ! sk( )!
(bk(x)u)!

. 

For any positive or negative real number ε, 
  

(N + ! )!
N !

 &  Nε as N &  . , so the most probable value of 

x occurs when 

  
  

(a1(x)u)r1 ...(ak(x)u)rk

(b1(x)u)s1 ...(bk(x)u)sk
 &  1 as u &  . . 

  
  

(a1(x)u)r1 ...(ak(x)u)rk

(b1(x)u)s1 ...(bk(x)u)sk
 = 

  

(a1(x))r1 ...(ak(x))rk

(b1(x))s1 ...(bk(x))sk
ur1 +...+rk ! s1 ! ...! sk . 

As we are talking about finite sets, there is always at least one value of x that maximizes Prd(x) and 
hence that is a solution to this equation. It will follow from the proof of the Probable Values Lemma 
(below) that, in the limit, there is only one allowable value of x that is a solution. It is, in fact, the 
only real -valued solution within the interval [0,1]. It was noted above that   r1 + ...+ rk ! s1 ! ...! sk = 0, 
so more simply, the most probable value of x is a real-valued solution within the interval [0,1] of 
the following equation:  

  
  

(a1(x))r1 ...(ak(x))rk

(b1(x))s1 ...(bk(x))sk
 = 1. 

In the common case in which r1 = É =  rk = s1 = É =  sk, the most probable value of x occurs when 

  
  

a1(x) !...! ak(x)

b1(x) !...! bk(x)
 = 1. 

Whichever of these equations we get, I will call it the term-characterization of x. We find the most 
probable value of x by solving these equations for x. 

 What remains is to show, in the limit, that if ξ is the most probable value of x, then ξ has 
probability 1 of being the value of x. This is established by the Probable Values Lemma, stated 
below. To prove the Probable Values Lemma, we first need: 

Partition Principle:  

If ε,x1,É, xk,y1,É, yk > 0,   r1! < x1,...,rk! < xk , x1+É+ xk+y1+É+ yk = 1, and r1+É+ rk = s1+É+ sk then 

 
  

1 !
r1"
x1

#

$%
&

'(

x1 ! r1"

)...) 1 !
rk"
xk

#

$%
&

'(

xk ! rk"

) 1+
s1"
y1

#

$%
&

'(

y1 +s1"

)...) 1+
sk"
yk

#

$%
&

'(

yk +sk"

> 1. 

Proof: By the inequality of the geometric and arithmetic mean, if z1,É, zn > 0, z1+É+ zn = 1, a1,É, an > 0, 
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and for some i,j, ai ! aj, then 

   a1
z1 !...! an

zn < z1a1 + ...+ znan . 

We have: 

   x1 ! r1" + ...+ xk ! rk" + y1 + s1" + ...+ yk + sk"  

 =   x1 + ...+ xk + y1 + ...+ yk + ! (s1 + ...+ sk " r1 " ..." rk ) = 1 

and 
  

x1

x1 ! r1"

#

$%
&

'(
 > 1 > 

  

y1

y1 + s1!

"

#$
%

&'
, so 

 
  

x1

x1 ! r1"

#

$%
&

'(

x1 ! r1"

)...)
xk

xk ! rk"

#

$%
&

'(

xk ! rk"

)
y1

y1 + s1"

#

$%
&

'(

y1 +s1"

)...)
yk

yk + sk"

#

$%
&

'(

yk +sk"

 

 < 
  
(x1 ! r1" )

x1

x1 ! r1"

#

$%
&

'(
+ ...+ (xk ! rk" )

xk

xk ! rk"

#

$%
&

'(
+ (y1 + s1" )

y1

y1 + s1"

#

$%
&

'(
+ ...+ (yk + sk" )

yk

yk + sk"

#

$%
&

'(
 

 = 1. 

Equivalently,  

 
  

1 !
r1"
x1

#

$%
&

'(

x1 ! r1"

)...) 1 !
rk"
xk

#

$%
&

'(

xk ! rk"

) 1+
s1"
y1

#

$%
&

'(

y1 +s1"

)...) 1+
sk"
yk

#

$%
&

'(

yk +sk"

 > 1.   !  

Now we can prov e: 

Probable Values Lemma:  

If LC is an infinitely unbounded set of linear constraints, a1(x),É, ak(x),b1(x),É, bk(x) are the 
resulting positive and negative partition coefficients, and  

  
  

(a1(! ))r1 ...(ak(! ))rk

(b1(! ))s1 ...(bk(! ))sk
 = 1 

 
then for  every ε,δ > 0 > 0, the probabili ty that ξ is within δ of the actual the value of x is greater 
than 1Ðε.   

Proof: Where 

   Prd(x) = (a1(x)u)!...(ak(x)u)!(b1(x)u)!...(bk(x)u)! 

it suffices to show that when ξ is the most probable value of x, then (1) if for every i " k, 
  
! <

b
i
(" )

s1

, 

then 
 

Prd(! + " )
Prd(! )

 &  .  as u &  . , and (2) if for every i " k, 
  
! <

ai (" )

r1
, then 

 

Prd(! " #)
Prd(! )

 &  .  as u &  . . I 

will just prove the former, as the latter is analogous.  

 
 

Prd(! + " )
Prd(! )

 = 
  

a1 ! + "( )u( )!
(a1(! ))!

...
ak ! + "( )u( )!

(ak(! ))!

b1 ! + "( )u( )!
(b1(! ))!

...
bk ! + "( )u( )!

(bk(! ))!
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  = 
  

(a1(! ) + " r1)u( )!
(a1(! )u)!

...
(ak(! ) + " rk )u( )!

(ak(! )u)!

(b1(! ) # " s1)u( )!
(b1(! )u)!

...
(bk(! ) # " sk)u( )!

(bk(! )u)!
. 

By the Stirling approximation, 
  

2! n
n
e

"
#$

%
&'

n

< n! < 2! n
n
e

"
#$

%
&'

n

1+
1

12n ( 1
"
#$

%
&'

. Thus as  u ! " , 

 
  

(a(! ) + " r )u( )!
(a(! )u)!

 &  

  

(a(! ) + r" )u( ) a(! )+r"( )u+ 1
2

(a(! )u)
a(! )u+ 1

2

e#r" u =

a(! )u 1 +
r"

a(! )

$

%&
'

()
$

%&
'

()

a(! )+r"( )u+ 1
2

(a(! )u)
a(! )u+ 1

2

e#r" u  

 = 
  

a(! )u
e

"
#$

%
&'

r( u

1+
r(

a(! )

"

#$
%

&'

a(! )+r(( )u+ 1
2

. 

Similarly,  

 
  

(b(! ) " #s)u( )!
(b(! )u)!

 &  

  

1 !
s"

b(#)
$

%&
'

()

b(#)! s"( )u+ 1
2

b(#)u
e

$
%&

'
()

s" u . 

Therefore, 

 
 

Prd(! + " )

Prd(! )
 &  

  

a1(! )u

e
"
#$

%
&'

r1( u

1+
r1(

a1(! )

"

#$
%

&'

a1 (! )+r1(( )u+ 1
2

)...)
ak(! )u

e
"
#$

%
&'

rk( u

1+
rk(

ak(! )

"

#$
%

&'

ak (! )+rk(( )u+ 1
2

)

1*
s1(

b1(! )

"

#$
%

&'

b1 (! )* s1(( )u+ 1
2

b1(! )u
e

"
#$

%
&'

s1( u )...)

1*
sk(

bk(! )

"

#$
%

&'

bk (! )* sk(( )u+ 1
2

bk(! )u
e

"
#$

%
&'

sk( u

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

 

 = 

  

a1(! )u
e

"
#$

%
&'

r1

(...(
ak(! )u

e
"
#$

%
&'

rk

b1(! )u
e

"
#$

%
&'

s1

(...(
bk(! )u

e
"
#$

%
&'

sk

"

#

$
$
$
$

%

&

'
'
'
'

) u

(

1+
r1)

a1(! )

"

#$
%

&'

a1 (! )+r1)( )u+ 1
2

(...( 1+
rk)

ak(! )

"

#$
%

&'

ak (! )+rk)( )u+ 1
2

( 1*
s1)

b1(! )

"

#$
%

&'

b1 (! )* s1)( )u+ 1
2

(...( 1*
sk)

bk(! )

"

#$
%

&'

bk (! )* sk)( )u+ 1
2

"

#

$
$
$
$
$

%

&

'
'
'
'
'

 

 = 

  

a1(! )( )r1 "..." ak(! )( )rk

b1(! )( )s1 "..." bk(! )( )sk

#

$
%
%

&

'
(
(

) u

u
e

#
$%

&
'(

r1+...+rk * s1* ...* sk

"

1+
r1)

a1(! )

#

$%
&

'(

a1 (! )+r1)( )u+ 1
2

"..." 1+
rk)

ak(! )

#

$%
&

'(

ak (! )+rk)( )u+ 1
2

" 1*
s1)

b1(! )

#

$%
&

'(

b1 (! )* s1)( )u+ 1
2

"..." 1*
sk)

bk(! )

#

$%
&

'(

bk (! )* sk)( )u+ 1
2

#

$

%
%
%
%
%

&

'

(
(
(
(
(

. 

  r1 + ...+ rk ! s1 ! ...! sk = 0, so 
  

u
e

!
"#

$
%&

r1+...+rk ' s1 ' ...' sk

= 1, and 

  

a1(! )( )r1 "..." ak(! )( )rk

b1(! )( )s1 "..." bk(! )( )sk
 = 1. 

Hence, 
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Prd(! + " )
Prd(! )

 &  

  

1+
r1!

a1(" )

#

$%
&

'(

a1 (" )+r1!( )u+ 1
2

)...) 1+
rk!

ak(" )

#

$%
&

'(

ak (" )+rk!( )u+ 1
2

) 1*
s1!

b1(" )

#

$%
&

'(

b1 (" )* s1!( )u+ 1
2

)...) 1*
sk!

bk(" )

#

$%
&

'(

bk (" )* sk!( )u+ 1
2

#

$

%
%
%
%
%

&

'

(
(
(
(
(

 

 = 
  

1+
r1!

a1(" )

#

$%
&

'(

a1 (" )+r1!( )u

)...) 1+
rk!

ak(" )

#

$%
&

'(

ak (" )+rk!( )u

) 1*
s1!

b1(" )

#

$%
&

'(

b1 (" )* s1!( )u

)...) 1*
sk!

bk(" )

#

$%
&

'(

bk (" )* sk!( )u

 

 = 

  

1+
r1!

a1(" )

#

$%
&

'(

a1 (" )+r1!( )

)...) 1+
rk!

ak(" )

#

$%
&

'(

ak (" )+rk!( )

) 1*
s1!

b1(" )

#

$%
&

'(

b1 (" )* s1!( )

)...) 1*
sk!

bk(" )

#

$%
&

'(

bk (" )* sk!( )#

$
%
%

&

'
(
(

u

. 

I will call the latter the slope function for x. By the Partition Principle:  

 

  

1+
r1!

a1(" )

#

$%
&

'(

a1 (" )+r1!( )

)...) 1+
rk!

ak(" )

#

$%
&

'(

ak (" )+rk!( )

) 1*
s1!

b1(" )

#

$%
&

'(

b1 (" )* s1!( )

)...) 1*
sk!

bk(" )

#

$%
&

'(

bk (" )* sk!( )#

$
%
%

&

'
(
(

u

 > 1. 

Hence 
 

Prd(! + ")

Prd(!)
 &  .  as u &  . . So as u &  . , the probability that x !

"
 ξ &  1.   !  

Law of Large Numbers for Proportions:  

 If B is infinite and ρ(A/B) = p then for every ε,δ > 0, there is an N such that 

 
  
! X ! (A / X)!"

#
p!/ !X $ B!&!X!is!finite!&!#X %N( ) %1&' . 

Proof: Suppose ρ(A/B) = p, where B is infinite. By the finite -set principle: 

 ! X ! (A / X) = r !/!X " B!&!# X = N( ) =  

 !x1,...,xN
!(A / { x1,...,xN}) = r !/!x1,...,xN  are pairwise distinct!&!x1,...,xN "B( ) . 

Ò!(A / { x1,...,xN}) = r Ó is equivalent to the disjunction of 
N!

(rN)!((1! r )N)!
 pairwise logically 

incompatible disjuncts of the form Ò y1,...,yrN ! A!&!z1,...,z(1" r )N # AÓ where { y1,...,yrN ,z1,...,z(1! r )N }  = 

{ x1,...,xN} . By the crossproduct principle,  

 ! x1,...,xrN ,y1,...,y(1" r )N

x1,...,xrN # A!&!y1,...,y(1" r )N $ A!/

x1,...,xrN ,y1,...,y(1" r )N # B!&!x1,...,xrN ,y1,...,y(1" r )N  are pairwise distinct

%

&'
(

)*
= 

 = prN (1! p)(1! r )N . 

(For instance, 
  
! x,y ,z Ax!&!Ay!&!~ Az!/ !Bx!&!By!&!Bz( )  = 

  
! A " A " (B# A),B" B" B( ) = p$p$(1# p) .) 

Hence by finite additivity:  

 ! X ! (A / X) = r !/!X " B!&!# X = N( ) =
N! prN (1! p)(1! r )N

(rN)!((1! r )N)!
. 
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This is just the formula for the binomial distribution. It follows by the familiar mathematics of the 
binomial distribution according to which, like C(n,r), it becomes Òneedle-likeÓ in the limit, that for 
every ε,δ > 0, there is an N such that 

 
  
! X ! (A / X)!"

#
p!/ !X $ B!&!X!is!finite!&!#X %N( ) %1&' .  !   

 

Limit Principle for Proportions:  

Consider a finitely unbounded finite set LC of linear constraints on proportions between 
Boolean compounds of a list of variables U,X1,É, Xn. Let r be limit solution f or ρ(P/Q) given LC. 
Then for any infinite set U, for every δ > 0: 

  
  
! X1 ,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U( ) = 1. 

Proof: Consider a finitely unbounded finite set LC of linear constraints, and let r be the limit 
solution for ρ(P/Q) given LC. Thus for every ε,δ > 0, there is an N such that if U* is finite and 

  
X1,...,Xn | LC!&!X1,...,Xn ! U *{ }  # N, then 

 
  
! X1 ,...,Xn

! (P,Q)!"
#

r !/ !LC!&!X1,...,Xn $ U *( ) %1&' . 

It follows by the projection principle that for every ε,δ > 0, there is an N such that 

 
  
! X1 ,...,Xn ,U ! (P,Q)!"

#
r !/ !LC!&!X1,...,Xn $ U *!&!U *!is finite!&!#U* %N( ) %1&'  

Suppose that for some δ > 0 and infinit e U: 

 
  
! X1 ,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U( ) = s. 

As LC is finitely unbounded, it follows that 
  

X1,...,Xn / !LC!&!X1,...,Xn ! U{ }  is infinite. Hence by 

the Law of Large Numbers for Proportions, for every ε > 0, there is an N such that 

(1) 
  
! U ! X1,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U *( )!" !
#

s!/ !U* $ U !&!U* is finite &!#U* %N( ) %1&'  

But we know th at there is an N such that for every finite U* such that U* $  U and #U* # N,  

 
  
! X1,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U *( ) %1&' . . 

So by the Universality Principle we get:  

(3) 
  
! U * ! X1,...,Xn

! (P,Q)!"
#

!r !/ !LC!&!X1,...,Xn $ U *( ) %1&' !/ !U* $ U !&!U* is finite &!#U* %N( ) = 1 

For every ε,δ > 0 there is an N such that (1) and (3) hold. It follows that s = 1.  !   
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Probable Probabilities Theorem:  

Consider a finitely unbound ed finite set LC of linear constraints on proportions between 
Boolean compounds of a list of variables U,X1,É, Xn. Let r be limit solution for ρ(P/Q) given LC. 
Then for any nomically possible property U, for every δ > 0, 

  
   
probX1 ,...,Xn

prob(P/ Q)!!
"

!r !/ !LC!&!X1,...,Xn7 !U( ) = 1. 

Proof: Assume the antecedent.   prob(P/ Q)!=ρ(P,Q), so the Limit Principle for Proportions 
immediately implies:  

 
   
! X1 ,...,Xn

prob(P/ Q)!"
#

!r !/ !LC!&!X1,...,Xn7 !U( ) = 1  

The crossproduct principle tells us: 

 
  
! A " B/ C" D( ) = ! (A / C)#! (B/ D) . 

The properties expressed by  !    LC!&!X1,...,Xn7 !U  !  and  !
  
prob(P/ Q)!!

"
!r  !  have the same 

instances in all physically possible worlds, so where W is the set of all physically possible worlds, 

 
   
probX1 ,...,Xn

prob(P/ Q)!!
"

!r !/ !LC!&!X1,...,Xn7 !U( )  

 = 
    
! "w,X1,...,Xn #| w $ W!&!prob(P/ Q)!%

&
!r{ } , "w,X1,...,Xn #| w $ W!&!LC!&!X1,...,Xn7 !U{ }( )  

 = 
    
! W " X1,...,Xn| prob(P/ Q)!#

$
!r{ } ,W " X1,...,Xn| !LC!&!X1,...,Xn7 !U{ }( )  

 = 
    
! (W/ W)"! X1 ,...,Xn

prob(P/ Q)!#
$

!r !/ !LC!&!X1,...,Xn7!U( ) = 1.   !  

 
5. Statistical Independence 

Finite Independence Principle:  

For 0 " a,b,c,r,s " 1 and for every ε,δ > 0 there is an N such that if U is finite  and #U > N, then 

 

  

! X ,Y,Z

! (X " Y,Z)!#
$

!r %s!/ !
X,Y,Z & U &!! (X ,Z) = r &!! (Y,Z) = s&!! (X ,U) = a&!! (Y,U) = b&!! (Z,U) = c

'

(
)

*

+
, - 1 . / .  

Proof: The limit value for ρ(X( Y,Z) given that X,Y,Z $  U & ρ(X,Z) = r, ρ(Y,Z) = s, ρ(X,U) = a, ρ(Y,U) 
= b, and ρ(Z,U) = c can be computed by executing the following instruction in the probable 
probabilities software:  
 
(analyze-probability-structure 
   :subsets '(A B C) 
   :constants '(a b c r s) 
   :probability-constraints '((prob(A / C) = r) 
                                                (prob(B / C) = s)) 
   :probability-queries '(prob((A & B) / C)) 
   :display-details t 
   :display-infix t) 

ÒprobÓ and Ò&Ó are used in place of ÒρÓ and Ò( Ó because non-ASCII symbols are not supported in  
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most computer languages.  However, in light of the Probable Probabilities Theorem, the result for 
the limit value implies the analogous principle for probabilities.  
 
 The software produces the following:  
 
( 
======================================================== 
Dividing U into 3 subsets A,B,C whose cardinalities relative to U are a, b, c, 
if the following constraints are satisfied: 
     prob(A / C) = r 
     prob(B / C) = s 
and hence 
     bc = (s * c) 
     ac = (r * c) 
and the values of a, b, c, r, s are held constant, 
then the term-set consisting of the cardinalities of the partition of U is: 
    { 
     ((ab - abc) * u) 
     (abc * u) 
     (((a + abc) - (ab + (r * c))) * u) 
     (((r * c) - abc) * u) 
     (((b + abc) - (ab + (s * c))) * u) 
     (((s * c) - abc) * u) 
     (((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) * u) 
     (((c + abc) - ((r * c) + (s * c))) * u) 
    } 
 
For computing the most probable value of abc, we need only consider the members of the term-set 
that contain abc: 
 
The subset of terms in the term-set that contain abc is: 
          { 
          ((ab - abc) * u) 
          (abc * u) 
          (((a + abc) - (ab + (r * c))) * u) 
          (((r * c) - abc) * u) 
          (((b + abc) - (ab + (s * c))) * u) 
          (((s * c) - abc) * u) 
          (((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) * u) 
          (((c + abc) - ((r * c) + (s * c))) * u) 
          } 
 
As shown in the Probable Proportions theorem, the most probable values of ab and abc are those 
that minimize the product of the  factorials of these members of the term-set, and for any positive 

or negative real number ε, 
  

(N + ! )!
N !

 &  Nε as N &  . . So  

 
The expectable-value of abc is then the real-valued solution to the following equation: 
 
1 = (((ab - abc) ^ ((ab - (abc + 1)) - (ab - abc))) 
     * 
     (abc ^ ((abc + 1) - abc)) 
     * 
     (((a + abc) - (ab + (r * c))) ^ (((a + (abc + 1)) - (ab + (r * c))) - ((a + abc) - (ab + (r * c))))) 
     * 
     (((r * c) - abc) ^ (((r * c) - (abc + 1)) - ((r * c) - abc))) 
     * 
     (((b + abc) - (ab + (s * c))) ^ (((b + (abc + 1)) - (ab + (s * c))) - ((b + abc) - (ab + (s * c))))) 
     * 
     (((s * c) - abc) ^ (((s * c) - (abc + 1)) - ((s * c) - abc))) 
     * 
     (((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) ^ (((ab + 1 + (r * c) + (s * c)) - (a + b + (abc + 1) + c)) - ((ab + 1 + (r * c)  

+ (s * c)) - (a + b + abc + c)))) 
     * 
     (((c + abc) - ((r * c) + (s * c))) ^ (((c + (abc + 1)) - ((r * c) + (s * c))) - ((c + abc) - ((r * c) + (s * c)))))) 
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   = (((ab - abc) ^ (- 1)) * (abc ^ 1) * (((a + abc) - (ab + (r * c))) ^ 1) * (((r * c) - abc) ^ (- 1)) * (((b + abc) - (ab + (s * c))) ^ 1)  
      * (((s * c) - abc) ^ (- 1)) * (((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) ^ (- 1)) * (((c + abc) - ((r * c) + (s * c))) ^ 1)) 
   = ((1 / (ab - abc)) * abc * ((abc + a) - (ab + (r * c))) * (1 / ((r * c) - abc)) * ((abc + b) - (ab + (s * c))) * (1 / ((s * c) - abc)) *  
       (1 / (((s * c) + (r * c) + 1 + ab) - (a + b + abc + c))) * ((abc + c) - ((r * c) + (s * c)))) 
   = (abc * ((abc + a) - (ab + (r * c))) * ((abc + b) - (ab + (s * c))) * ((abc + c) - ((r * c) + (s * c))) * (1 / (((s * c) + (r * c) + 1 +  
       ab) - (a + b + abc + c))) * (1 / ((s * c) - abc)) * (1 / ((r * c) - abc)) * (1 / (ab - abc))) 
   = ((((c + abc) - ((r * c) + (s * c))) * ((b + abc) - (ab + (s * c))) * ((a + abc) - (ab + (r * c))) * abc) / ((ab - abc) * ((r * c) Ð  
       abc) * ((s * c) - abc) * ((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)))) 
 
The subset of terms in the term-set that contain ab is: 
          { 
          ((ab - abc) * u) 
          (((a + abc) - (ab + (r * c))) * u) 
          (((b + abc) - (ab + (s * c))) * u) 
          (((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) * u) 
          } 
The expectable-value of ab is then the real-valued solution to the following equation: 
1 = (((ab - abc) ^ (((ab + 1) - abc) - (ab - abc))) 
      * (((a + abc) - (ab + (r * c))) ^ (((a + abc) - ((ab + 1) + (r * c))) - ((a + abc) - (ab + (r * c)))))  
      * (((b + abc) - (ab + (s * c))) ^ (((b + abc) - ((ab + 1) + (s * c))) - ((b + abc) - (ab + (s * c)))))  
      * (((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) ^ ((((ab + 1) + 1 + (r * c) + (s * c)) - (a + b + abc + c))  
                                                                                     - ((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c))))) 
   = (((ab - abc) ^ 1) * (((a + abc) - (ab + (r * c))) ^ (- 1))  
    * (((b + abc) - (ab + (s * c))) ^ (- 1)) 
    * (((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) ^ 1)) 
   = ((ab - abc) * (1 / ((abc + a) - (ab + (r * c))))  
      * (1 / ((abc + b) - (ab + (s * c)))) * (((s * c) + (r * c) + 1 + ab) - (a + b + abc + c))) 
   = ((ab - abc) * (((s * c) + (r * c) + 1 + ab) - (a + b + abc + c))  
      * (1 / ((abc + b) - (ab + (s * c)))) * (1 / ((abc + a) - (ab + (r * c))))) 
   = ((((ab + 1 + (r * c) + (s * c)) - (a + b + abc + c)) * (ab - abc)) / (((a + abc) - (ab + (r * c))) * ((b + abc) - (ab + (s * c))))) 
The preceding term-characterization for ab simplifies to: 
. . ((((c * ab) + (u * abc) + (a * b) + (r * s * (c ^ 2))) - ((c * abc) + (u * ab) + (a * s * c) + (r * c * b))) = 0) 
Solving for ab: 
. . ab = ((((u * abc) + (a * b) + (r * s * (c ^ 2))) - ((r * c * b) + (a * s * c) + (c * abc))) / (u - c)) 
Substituting the preceding definition for ab into the previous term-characterizations 
produces the new term-characterizations: 
. . . . . abc: 1 = ((((c + abc) - ((r * c) + (s * c)))  

* ((b + abc) - (((((u * abc) + (a * b) + (r * s * (c ^ 2))) 
                             - ((r * c * b) + (a * s * c) + (c * abc))) / (u - c)) + (s * c))) 
                          * ((a + abc) - (((((u * abc) + (a * b) + (r * s * (c ^ 2))) 
                             - ((r * c * b) + (a * s * c) + (c * abc))) / (u - c)) + (r * c))) * abc) 
                    / 
                    ((((((u * abc) + (a * b) + (r * s * (c ^ 2))) - ((r * c * b) + (a * s * c) + (c * abc))) / (u - c)) - abc)  
                         * ((r * c) - abc) * ((s * c) - abc) * ((((((u * abc) + (a * b) + (r * s * (c ^ 2)))  
                              - ((r * c * b) + (a * s * c) + (c * abc))) / (u - c)) + u + (r * c) + (s * c)) - (a + b + abc + c)))) 
These term-characterizations simplify to yield the following term-characterizations: 
. . . . . abc: 1 = ((abc * ((c + abc) - ((r * c) + (s * c)))) / (((r * c) - abc) * ((s * c) - abc))) 
. The preceding term-characterization for abc simplifies to: 
. . . (((r * s * (c ^ 2)) - (abc * c)) = 0) 
. Solving for abc: 
. . . abc = (r * s * (c ^ 1)) 
 
========================= EXPAND-DEFS ============================ 
Thus far we have found the following definitions: 
abc = (r * s * (c ^ 1)) 
ab = ((((u * abc) + (a * b) + (r * s * (c ^ 2))) - ((r * c * b) + (a * s * c) + (c * abc))) / (u - c)) 
 
Substituting the definition for abc into the definition for ab and simplifying, produces: 
ab = ((((a * b) + (u * r * s * c)) - ((r * c * b) + (a * s * c))) / (u - c)) 
 
Grounded definitions of the expectable values were found for all the variables. 
---------------------------------------------------------------------------------------------- 
The following definitions of expectable values were found that appeal only to the constants: 
---------- 
abc = (r * s * c) 
---------- 
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ab = ((((r * s * c) + (a * b)) - ((r * c * b) + (a * s * c))) / (1 - c)) 
======================================================== 
Reconstruing a, b, c, etc., as probabilities relative to U rather than as cardinalities, the 
following characterizations were found for the expectable values of the probabilities wanted: 
---------- 
prob((A & B) / C) = (r * s) 
---------- 
======================================================== 
)   !  
  
 

8. Classical Direct Inference 

Representation Theorem for Singular Probabilities:  

 PROB(Fa) = prob(Fx/ x = a & K ). 
 
Proof: 

prob(Fx/ x = a & K ) 

= 
    
! "w,x#| w $ W!&!(x = a!&!Fx!&!K) at w{ } , "w,x#| w $ W!&!(x = a!&!K) at w{ }( )  

= 
    
! "w,x#| w $ W!&!x = a!&!(Fx!&!K) at w{ } , "w,x#| w $ W!&!x = a!&!K at w{ }( )  

= 
    
! "w,a#| w $ W!&!(Fa!&!K) at w{ } , "w,a#| w $ W!&!K at w{ }( )  

= 
    
! w| w " W!&!(Fa!&!K) at w{ } # {a}, w| w " W!&!K at w{ } # {a}( )  

= 
    
! w| w " W!&!(Fa!&!K) at w{ } , w| w " W!&!K at w{ }( ) #! ({a},{a})  

= 
    
! w| w " W!&!(Fa!&!K) at w{ } , w| w " W!&!K at w{ }( )  

=  PROB(Fa) .   !  
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